Projected effects of climate change on bloom dynamics in the Gulf of Maine.

J Mar Syst

NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540-6649.

Published: June 2022

Worldwide, warming ocean temperatures have contributed to extreme harmful algal bloom events and shifts in phytoplankton species composition. In 2016 in the Gulf of Maine (GOM), an unprecedented bloom led to the first domoic-acid induced shellfishery closures in the region. Potential links between climate change, warming temperatures, and the GOM assemblage, however, remain unexplored. In this study, a global climate change projection previously downscaled to 7-km resolution for the Northwest Atlantic was further refined with a 1-3-km resolution simulation of the GOM to investigate the effects of climate change on HAB dynamics. A 25-year time slice of projected conditions at the end of the 21 century (2073-2097) was compared to a 25-year hindcast of contemporary ocean conditions (1994-2018) and analyzed for changes to GOM inflows, transport, and growth potential. On average, climate change is predicted to lead to increased temperatures, decreased salinity, and increased stratification in the GOM, with the largest changes occurring in the late summer. Inflows from the Scotian Shelf are projected to increase, and alongshore transport in the Eastern Maine Coastal Current is projected to intensify. Increasing ocean temperatures will likely make growth conditions less favorable in the southern and western GOM but improve growth conditions in the eastern GOM, including a later growing season in the fall, and a longer growing season in the spring. Combined, these changes suggest that blooms in the eastern GOM could intensify in the 21 century, and that the overall species assemblage might shift to warmer-adapted species such as or other species that may be introduced.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495272PMC
http://dx.doi.org/10.1016/j.jmarsys.2022.103737DOI Listing

Publication Analysis

Top Keywords

climate change
20
effects climate
8
gulf maine
8
ocean temperatures
8
gom
8
growth conditions
8
eastern gom
8
growing season
8
climate
5
change
5

Similar Publications

Assessing the distribution pattern of Saussurea medusa under climate change using an optimized MaxEnt model in Qinghai-Xizang Plateau.

Environ Monit Assess

January 2025

Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.

Saussurea medusa is a rare alpine plant with significant medicinal value. To better understand the changes in its habitat in the context of climate change, this study used an optimized MaxEnt model to predict the current and future habitat of S. medusa under four shared socioeconomic pathways (SSPs) across three time periods (current, mid-century, and end-century) based on three climate system models.

View Article and Find Full Text PDF

This research investigates the interactive effects of elevated ozone (eO) and carbon dioxide (eCO) on stomatal morphology and leaf anatomical characteristics in two wheat cultivars with varying O sensitivities. Elevated O increased stomatal density and conductance, causing oxidative stress and cellular damage, particularly in the O-sensitive cultivar PBW-550 (PW), compared to HUW-55 (HW). Conversely, eCO reduced stomatal density and pore size, mitigating O-induced damage by limiting O influx.

View Article and Find Full Text PDF

Species distribution modeling is extensively used for predicting potential distributions of invasive species. However, an ensemble modeling approach has been less frequently used particularly pest species. The bird cherry-oat aphid Rhopalosiphum padi L.

View Article and Find Full Text PDF

Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.

Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.

View Article and Find Full Text PDF

Aedes-borne arboviral human infections in Europe from 2000-2023: a systematic review and meta-analysis.

Travel Med Infect Dis

January 2025

University of Zürich, Epidemiology, Biostatistics and Prevention Institute, Hirschengraben 84, 8001, Zürich, Switzerland; WHO Collaborating Centre for Travellers' Health, Department of Global and Public Health, MilMedBiol Competence Centre, Hirschengraben 84, 8001, Zürich, Switzerland.

Introduction: Aedes-borne arboviral infections, both imported and autochthonous, are reported in Europe. We evaluated the landscape of these infections in Europe over 23 years and attempted to pre-empt the trajectory of impact of these infections in the climatic context of Aedes mosquito expansion in Europe.

Methods: This systematic review was conducted in accordance with PRISMA guidelines and registered in Prospero (CRD42023360259).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!