Purpose: To assess the changes in optic nerve head and macular microvascular networks after acute intraocular pressure (IOP) rise in healthy eyes versus the eyes of diabetic patients.

Methods: In this prospective, interventional, comparative study, 24 eyes of 24 adults including 12 eyes of healthy nondiabetic subjects and 12 eyes with mild or moderate non-proliferative diabetic retinopathy (NPDR) were enrolled. IOP elevation was induced by a suction cup attached to the conjunctiva. IOP and optical coherence tomography angiographic (OCTA) images of the optic disc and macula were obtained before and immediately after the IOP rise.

Results: Baseline and post-suction IOPs were not significantly different between the two groups (all 0.05). The mean IOP elevation was 13.93 3.41 mmHg among all eyes and was statistically significant as compared to the baseline in both groups (both 0.05). After IOP elevation, healthy eyes demonstrated a reduction in the vessel density in the whole image deep and superficial capillary plexuses and parafoveal deep capillary plexus (DCP) (all 0.05). In diabetic retinopathy, foveal vessel density at DCP decreased significantly following IOP rise ( = 0.003). In both groups, inside disc vessel density decreased significantly after IOP rise (both 0.05), however, no significant change was observed in peripapillary vessel density (both 0.05).

Conclusion: Acute rise of IOP may induce different levels of microvascular changes in healthy and diabetic eyes. Optic disc microvasculature originating from the posterior ciliary artery may be more susceptible to IOP elevation than that of retinal microvasculature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9493420PMC
http://dx.doi.org/10.18502/jovr.v17i3.11573DOI Listing

Publication Analysis

Top Keywords

iop elevation
16
vessel density
16
iop rise
12
iop
10
optical coherence
8
coherence tomography
8
acute intraocular
8
intraocular pressure
8
eyes
8
healthy eyes
8

Similar Publications

Purpose: The purpose of this study was to evaluate the correlation between axial length (AL) and retinal oxygen dynamic parameters in adult patients.

Methods: This was an observational cross-sectional study with 79 Chinese adults with myopia aged 18 to 37 years. All participants underwent AL measurements, cycloplegic refraction, and other ophthalmic examinations.

View Article and Find Full Text PDF

Purpose: Vascular impairments, including reduced capillary density (CD), impaired autoregulation capacity (Reg), and elevated intraocular pressure (IOP), have been identified as significant contributors to glaucomatous disease. This study implemented a theoretical model to quantify the impact of these impairments on retinal blood flow and oxygenation as intraluminal pressure (Pa) is varied.

Methods: A theoretical model of the retinal vasculature was used to simulate reductions in CD by 10% (early glaucoma) and 30% to 50% (advanced glaucoma), a range in autoregulation capacity from 0% (totally impaired) to 100% (totally functional), and normal (15 mm Hg) and elevated (25 mm Hg) levels of IOP.

View Article and Find Full Text PDF

Tubulin Acetylation Enhances Microtubule Stability in Trabecular Meshwork Cells Under Mechanical Stress.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States.

Purpose: To study the roles of tubulin acetylation and cyclic mechanical stretch (CMS) in trabecular meshwork (TM) cells and their impact on outflow pathway physiology and pathology.

Methods: Primary TM cell cultures were subjected to CMS (8% elongation, 24 hours), and acetylated α-tubulin at lysine 40 (Ac-TUBA4) was assessed by western blotting and immunofluorescence. Enzymes regulating tubulin acetylation were identified via siRNA-mediated knockdowns of ATAT1, HDAC6, and SIRT2.

View Article and Find Full Text PDF

Purpose: Idiopathic elevated episcleral venous pressure (IEEVP) or Radius-Maumenee syndrome (RMS) is a rare disease without any identified underlying cause. An increasing episcleral venous pressure (EVP) leads to raised intraocular pressure (IOP) and consequently glaucomatous damage of the optic nerve. The objective of this paper is to report this rare condition as well as its clinical management.

View Article and Find Full Text PDF

Rapamycin protects glucocorticoid-induced glaucoma model mice against trabecular meshwork fibrosis by suppressing mTORC1/2 signaling.

Eur J Pharmacol

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China. Electronic address:

Systemic or local use of glucocorticoids (GCs) can induce pathological elevation of intraocular pressure (IOP), potentially leading to permanent visual loss. Previous studies have demonstrated that rapamycin (Rapa) inhibits the activation of retinal glial cells and the production of neuroinflammation, achieving neuroprotective goals. However, there has been little research on the effect of Rapa on the trabecular meshwork (TM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!