Cytokinins, a type of phytohormones that induce division of cytoplasm, have considerable value in agriculture due to their influences on several physiological processes of plants such as morphogenesis, development of chloroplast, seed dormancy, leaf senescence, etc. Previously, it was assumed that plants obtain cytokinin from the soil produced by microbes as these hormones were first discovered in soil-inhabiting bacteria i.e., . Later, the cytokinin biosynthesis gene, i.e., ipt gene, has been reported in plants too. Though plants synthesize cytokinins, several studies have reported that the exogenous application of cytokinins has numerous beneficial effects including the acceleration of plant growth and boosting economic yield. Cyanobacteria may be employed in the soil not only as the source of cytokinins but also as the source of other plant growth-promoting metabolites. These organisms biosynthesize the cytokinins using the enzyme isopentenyl transferases (IPTs) in a fashion similar to the plants; however, there are few differences in the biosynthesis mechanism of cytokinins in cyanobacteria and plants. Cytokinins are important for the establishment of interaction between plants and cyanobacteria as evidenced by gene knockout experiments. These hormones are also helpful in alleviating the adverse effects of abiotic stresses on plant development. Cyanobacterial supplements in the field result in the induction of adventitious roots and shoots on petiolar as well as internodal segments. The leaf, root, and stem explants of certain plants exhibited successful regeneration when treated with cyanobacterial extract/cell suspension. These successful regeneration practices mark the way of cyanobacterial deployment in the field as a great move toward the goal of sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9504062 | PMC |
http://dx.doi.org/10.3389/fgene.2022.933226 | DOI Listing |
Transgenic Res
January 2025
Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan.
Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.
View Article and Find Full Text PDFSci Rep
January 2025
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops.
View Article and Find Full Text PDFPlant Genome
March 2025
Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey.
Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are key players in the basal immune response of plants.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland.
Human skin fibroblasts are an excellent in vitro model for tracking the processes occurring in human skin and studying the potential impact of various biologically active substances on these processes. Two plant hormones, which are included in the cytokinins group-kinetin (K) and N-6-benzyladenine (BA)-have a positive effect on human skin. Therefore, an attempt was made to examine the effect they have on key skin functions, cell proliferation, and migration, as well as collagen synthesis in them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!