Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder with a high global incidence. has been used to treat T2DM in traditional medicine, with previous , , and clinical trial studies demonstrating its efficacy. This study aimed to determine the mechanism of in treating T2DM by network pharmacology.
Methods: The bioactive compounds of and corresponding targets of T2DM were retrieved across multiple databases. The protein-protein interaction network was established using the STRING database and topological analysis helped identify the core target. Using the DAVID tool, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Finally, we checked the binding of core targets and bioactive compounds using molecular docking.
Results: The -T2DM networks mainly contained 22 bioactive compounds and 314 overlapping targets. The five most significant core targets were SRC, STAT3, MAPK1, AKT1, and PIK3R1. There were 244 GO terms and 95 KEGG pathways (adjusted < 0.01) that were strongly correlated with diabetes-related signaling pathways, such as insulin resistance, the HIF-1 signaling pathway, the PI3K/Akt signaling pathway, the prolactin signaling pathway, the Rap1 signaling pathway, the Ras signaling pathway, the calcium signaling pathway, and the FoxO signaling pathway. Molecular docking results revealed that the top five core targets had a high binding affinity with the bioactive compounds of .
Conclusion: The bioactive compounds and targets in ameliorate T2DM by regulating insulin resistance and multiple signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507733 | PMC |
http://dx.doi.org/10.1155/2022/3082109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!