Promising role of D-amino acids in irritable bowel syndrome.

World J Gastroenterol

Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan.

Published: August 2022

Irritable bowel syndrome (IBS) is an important health care concern. Alterations in the microbiota of the gut-brain axis may be linked to the pathophysiology of IBS. Some dietary intake could contribute to produce various metabolites including D-amino acids by the fermentation by the gut microbiota. D-amino acids are the enantiomeric counterparts of L-amino acids, in general, which could play key roles in cellular physiological processes against various oxidative stresses. Therefore, the presence of D-amino acids has been shown to be linked to the protection of several organs in the body. In particular, the gut microbiota could play significant roles in the stability of emotion the action of D-amino acids. Here, we would like to shed light on the roles of D-amino acids, which could be used for the treatment of IBS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453761PMC
http://dx.doi.org/10.3748/wjg.v28.i31.4471DOI Listing

Publication Analysis

Top Keywords

d-amino acids
24
irritable bowel
8
bowel syndrome
8
gut microbiota
8
acids
7
d-amino
6
promising role
4
role d-amino
4
acids irritable
4
syndrome irritable
4

Similar Publications

Visible light-driven pyridoxal radical biocatalysis has emerged as a new strategy for the stereoselective synthesis of valuable noncanonical amino acids in a protecting-group-free fashion. In our previously developed dehydroxylative C-C coupling using engineered PLP-dependent tryptophan synthases, an enzyme-controlled unusual α-stereochemistry reversal and pH-controlled enantiopreference were observed. Herein, through high-throughput photobiocatalysis, we evolved a set of stereochemically complementary PLP radical enzymes, allowing the synthesis of both l- and d-amino acids with enhanced enantiocontrol across a broad pH window.

View Article and Find Full Text PDF

Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.

View Article and Find Full Text PDF

Halogen-Bearing Peptide Liquid Crystals to Elicit Molecular Alignments for Residual Dipolar Coupling Measurement.

Macromol Rapid Commun

January 2025

State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Residual dipolar coupling (RDC) not only contributes to the dynamic analysis of proteins but also provides a robust route for the structure determination of small organic compounds. An essential prerequisite for this methodology is the availability of alignment media. Herein, a series of novel peptide-based alignment media are generated by introducing D-type or halogen-bearing amino acids for RDC measurements.

View Article and Find Full Text PDF

Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.

View Article and Find Full Text PDF

Oolong tea contains diverse isomers, such as amino acids. D-amino acids, compared with their L-enantiomers, exhibit distinct properties, influencing both the flavor and bioactivity of the tea. However, the analysis of these isomers remains challenging, especially the simultaneous determination of structural and chiral isomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!