The global population growth, climate change effects, and the rapid decline in the stock of fossil fuels increase the demand for food, water, and energy. Irrigation technologies are essential in negating poverty and food insecurity in a developing country while promoting sustainable development goals. However, rain-fed agricultural activities and the lack of modern irrigation technologies in Ethiopia aggravate the problem. This work presents a transient performance investigation of a solar dish concentrator coupled with a Stirling engine and thermoelectric generator for the small-scale irrigation system. A solar dish concentrator with a 2.8 m aperture diameter and 0.4 m depth was used, and Stirling engine analysis was performed using a second-order adiabatic model. System performance was investigated at different operating parameters to predict output power and pump flow rate variation with solar time for a selected irrigation season. Results show that at a heat source temperature of 413.8 K, the thermoelectric unit gives maximum electrical power of 5.2 W at an efficiency of 2.78%. At the same time, the Stirling engine-driven pump provides a cumulative flow rate of 173,594.95 L per day at a thermal efficiency of 18.61%. The output power and pump flow rate reach their maximum at noontime for all selected irrigation seasons. The effect of regenerator effectiveness on the thermal efficiency of the Stirling engine was also examined, and the findings indicate that the Stirling engine's thermal efficiency rises with regenerator effectiveness. Using a solar thermal irrigation system in a location with a high solar radiation potential allows small farmers to generate more income and contribute to the country's food security.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494259 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e10629 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!