A new series of 2,4-disubstituted thiazole derivatives containing 4-(3,4,5-trimethoxyphenyl) moiety was synthesized and evaluated for their potential anticancer activity as tubulin polymerization inhibitors. All designed compounds were screened for cytotoxic activity against four human cancer cell lines, namely, HepG2, MCF-7, HCT116, and HeLa, using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-tetrazolium bromide assay, with combretastatin A-4 as a reference drug. Compounds , , , , and , showed superior activity against the tested cell lines, with IC values ranging from 3.35 ± 0.2 to 18.69 ± 0.9 μM. Further investigation for the most active cytotoxic agents as tubulin polymerization inhibitors was also performed in order to explore the mechanism of their antiproliferative activity. The obtained results suggested that compounds , and remarkably inhibit tubulin polymerization, with IC values of 2.95 ± 0.18, 2.00 ± 0.12, and 2.38 ± 0.14 μM, respectively, which exceeded that of the reference drug combretastatin A-4 (IC 2.96 ± 0.18 μM). Molecular docking studies were also conducted to investigate the possible binding interactions between the targeted compounds and the tubulin active site. The interpretation of the results showed clearly that compounds and were identified as the most potent tubulin polymerization inhibitors with promising cytotoxic activity and excellent binding mode in the docking study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494671PMC
http://dx.doi.org/10.1021/acsomega.2c05077DOI Listing

Publication Analysis

Top Keywords

tubulin polymerization
20
polymerization inhibitors
16
molecular docking
8
docking study
8
thiazole derivatives
8
cytotoxic activity
8
cell lines
8
combretastatin a-4
8
reference drug
8
tubulin
6

Similar Publications

Background: Tau is a neuronal microtubule associated protein whose interactions with microtubules are regulated by phosphorylation. Tau has numerous putative phosphorylation sites, but it is unclear which combinations of Tau phosphorylation co-occur in the normal state and precisely how they impact Tau function. Adding further complexity, there are six major Tau isoforms arising from alternative splicing.

View Article and Find Full Text PDF

Background: Sorbs2 is a cytoskeletal adaptor protein that is expressed in hippocampal neurons, but its mechanistic role in these cells is not yet fully understood.

Method: We created two groups of mice for our study: whole-body Sorbs2-Knockout (KO) mice and Sorbs2-Flox mice, which had neuronal knockout via AAV-PHP.eB-hSyn1-Cre virus injection.

View Article and Find Full Text PDF

Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.

View Article and Find Full Text PDF

In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site.

View Article and Find Full Text PDF

Excess Ub-K48 Induces Neuronal Apoptosis in Alzheimer's Disease.

J Integr Neurosci

December 2024

Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, 241002 Wuhu, Anhui, China.

Background: K48-linked ubiquitin chain (Ub-K48) is a crucial ubiquitin chain implicated in protein degradation within the ubiquitin-proteasome system. However, the precise function and molecular mechanism underlying the role of Ub-K48 in the pathogenesis of Alzheimer's disease (AD) and neuronal cell abnormalities remain unclear. The objective of this study was to examine the function of K48 ubiquitination in the etiology of AD, and its associated mechanism of neuronal apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!