GTPase-activating SH3 domain-binding protein 2 (G3BP2) is a mediator that responds to environmental stresses through stress granule formation and is involved in the progression of chronic diseases. However, no studies have examined the contribution of G3BP2 in the oscillatory shear stress (OSS)-induced endothelial dysfunction. Here we assessed the effects of G3BP2 in endothelial cells (ECs) function and investigated the underlying mechanism. Using shear stress apparatus and partial ligation model, we identified that stress granule-related genes in ECs could be induced by OSS with RNA-seq, and then confirmed that G3BP2 was highly and specifically expressed in athero-susceptible endothelia in the OSS regions. mice had significantly decreased atherosclerotic lesions associated with deficiency of G3BP2 in protecting endothelial barrier function, decreasing monocyte adhesion to ECs and inhibiting the proinflammatory cytokine levels. Furthermore, loss of G3BP2 diminished OSS-induced inflammation in ECs by increasing YAP nucleocytoplasmic shuttling and phosphorylation. These data demonstrate that G3BP2 is a critical OSS regulated gene in regulating ECs function and that G3BP2 inhibition in ECs is a promising atheroprotective therapeutic strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485288 | PMC |
http://dx.doi.org/10.1016/j.gendis.2021.11.003 | DOI Listing |
Elife
December 2024
Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States.
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution.
View Article and Find Full Text PDFMol Cell
November 2024
Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA. Electronic address:
Ribonucleoprotein (RNP) granules are biomolecular condensates requiring RNA and proteins to assemble. Stress granules are RNP granules formed upon increases in non-translating messenger ribonucleoprotein particles (mRNPs) during stress. G3BP1 and G3BP2 proteins are proposed to assemble stress granules through multivalent crosslinking of RNPs.
View Article and Find Full Text PDFJ Exp Med
January 2025
Division Life Sciences and Medicine, Department of General Surgery, The First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center Advanced Interdisciplinary Science and Biomedicine IHM, University of Science and Technology of China, Hefei, China.
The molecular mechanism by which inborn errors of the human RNA lariat-debranching enzyme 1 (DBR1) underlie brainstem viral encephalitis is unknown. We show here that the accumulation of RNA lariats in human DBR1-deficient cells interferes with stress granule (SG) assembly, promoting the proteasome degradation of at least G3BP1 and G3BP2, two key components of SGs. In turn, impaired assembly of SGs, which normally recruit PKR, impairs PKR activation and activity against viruses, including HSV-1.
View Article and Find Full Text PDFExp Cell Res
October 2024
Department of Nursing, Beijing Shijitan Hospital, Capital Medical University, Beijing, China. Electronic address:
M1 polarization of synovial macrophages contributes to cartilage degeneration and osteoarthritis (OA) development. However, limited knowledge is available about how M1 macrophages affect the biological properties of chondrocytes. This study aimed to explore the role of exosomal microRNAs (miRs) released from M1 macrophages in modulating the proliferation and survival of chondrocytes.
View Article and Find Full Text PDFMol Biol Cell
November 2024
Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143.
Stress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these membraneless organelles is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs form SGs following stress-induced translational arrest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!