Background: RNA methylation has emerged as an active research field in diabetes mellitus (DM) and its complications, while few bibliometric analyses have been performed. We aimed to visualize the hotspots and trends using bibliometric analysis to provide a comprehensive and objective overview of the current search state in this field.

Methods: The articles and reviews regarding RNA methylation in DM and its complications were from the Web of Science Core Collection. A retrospective bibliometric analysis and science mapping was performed using the CiteSpace software to plot the knowledge maps and predict the hotspots and trends.

Results: Three hundred seventy-five qualified records were retrieved. The annual publications gradually increased over the past 20 years. These publications mainly came from 66 countries led by Canada and 423 institutions. Leiter and Sievenpiper were the most productive authors, and Jenkins ranked first in the cited authors. was the most co-cited journal. The most common keywords were "Type 2 diabetes", "cardiovascular disease", "diabetes mellitus", and "n 6 methyladenosine". The extracted keywords mainly clustered in "beta-cell function", "type 2 diabetes", "diabetic nephropathy", "aging", and "n6-methyladenosine". N6-methyladenosine (mA) in DM and its complications were the developing areas of study.

Conclusion: Studies on RNA methylation, especially mA modification, are the current hotspots and the future trends in type 2 diabetes (T2D) and diabetic nephropathy (DN), as well as a frontier field for other complications of DM. Strengthening future cooperation and exchange between countries and institutions is strongly advisable to promote research developments in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492860PMC
http://dx.doi.org/10.3389/fendo.2022.997034DOI Listing

Publication Analysis

Top Keywords

rna methylation
16
bibliometric analysis
12
diabetes mellitus
8
mellitus complications
8
"type diabetes"
8
complications
5
bibliometric
4
rna
4
analysis rna
4
methylation
4

Similar Publications

N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic RNA and is also present in various viral RNAs, where it plays a crucial role in regulating the viral life cycle. However, the molecular mechanisms through which viruses regulate host RNA m6A methylation are not fully understood. In this study, we reveal that SARS-CoV-2 and HCoV-OC43 infection enhance host m6A modification by activating the mTORC1 signaling pathway.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.

View Article and Find Full Text PDF

Polymorphisms in the gene and neuroblastoma risk in Chinese children from Jiangsu province.

J Cancer

January 2025

Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong, China.

Neuroblastoma is the most prevalent extracranial solid tumor among children and exhibits remarkable heterogeneity. The methylation of cytosine to form 5-methylcytosine (m5C) is the primary type of modification found in DNA and RNA. The NOL1/NOP2/sun (NSUN) family, specifically NSUN1, is responsible for the methylation process and has been shown to play a key role in cell differentiation and cancer development.

View Article and Find Full Text PDF

Chemoresistance severely deteriorates the prognosis of advanced gastric cancer (GC) patients. Several studies demonstrated that (HP)-positive GC patients showed better outcomes after receiving chemotherapy than HP-negative ones. This study aims to confirm the role of HP in GC chemotherapy and to study the underlying mechanisms.

View Article and Find Full Text PDF

Long non-coding RNA LINC01214 is reported to be up-regulated in non-small cell lung cancer (NSCLC), however, its function in NSCLC has not been elucidated yet. In our study, we verified that LINC01214 was aberrantly higher in the tumor tissues and cell lines than that in the normal controls, and was relevant to the severity and prognosis of NSCLC through using real-time quantitative PCR. Then, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay and flow cytometry illustrated that knocking down LINC01214 restrained cell proliferation and promoted apoptosis in A549 and H1299 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!