A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Weak Cation Selectivity in HCN Channels Results From K-Mediated Release of Na From Selectivity Filter Binding Sites. | LitMetric

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate the pacemaker current which plays an important role in the timing of various biological processes like the heart beat. We used umbrella sampling to explore the potential of mean force for the conduction of potassium and sodium through the open HCN4 pore. Our data explain distinct functional features like low unitary conductance and weak selectivity as a result of high energetic barriers inside the selectivity filter of this channel. They exceed the 3-5 kJ/mol threshold which is presumed as maximal barrier for diffusion-limited conductance. Furthermore, simulations provide a thermodynamic explanation for the weak cation selectivity of HCN channels that contain only two ion binding sites in the selectivity filter (SF). We find that sodium ions bind more strongly to the SF than potassium and are easier released by binding of potassium than of another sodium. Hence ion transport and selectivity in HCN channels is not determined by the same mechanism as in potassium-selective channels; it rather relies on sodium as a weak blocker that can only be released by potassium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9492253PMC
http://dx.doi.org/10.1093/function/zqac019DOI Listing

Publication Analysis

Top Keywords

hcn channels
16
selectivity hcn
12
selectivity filter
12
weak cation
8
cation selectivity
8
binding sites
8
potassium sodium
8
selectivity
7
channels
5
weak
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!