Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Genetic engineering of T cells for CAR-T cell therapy has come to the forefront of cancer treatment over the last few years. CAR-T cells are produced by viral gene transfer into T cells. The current gold standard of viral gene transfer involves spinoculation of retronectin-coated plates, which is expensive and time-consuming. There is a significant need for efficient and cost-effective methods to generate CAR-T cells. Described here is a method for fabricating inexpensive, dry macroporous alginate scaffolds, known as Drydux scaffolds, that efficiently promote viral transduction of activated T cells. The scaffolds are designed to be used in place of gold standard spinoculation of retronectin-coated plates seeded with virus and simplify the process for transducing cells. Alginate is cross-linked with calcium-D-gluconate and frozen overnight to create the scaffolds. The frozen scaffolds are freeze-dried in a lyophilizer for 72 h to complete the formation of the dry macroporous scaffolds. The scaffolds mediate viral gene transfer when virus and activated T cells are seeded together on top of the scaffold to produce genetically modified cells. The scaffolds produce >85% primary T cell transduction, which is comparable to the transduction efficiency of spinoculation on retronectin-coated plates. These results demonstrate that dry macroporous alginate scaffolds serve as a cheaper and more convenient alternative to the conventional transduction method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/64036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!