Dental caries (tooth-decay) is caused by biofilms harboring polymicrobial communities on teeth that leads to the onset of localized areas of enamel demineralization. Streptococcus mutans has been clinically associated with severe caries in childhood. Although commensal bacteria can combat S. mutans using self-generated antimicrobials such as hydrogen peroxide (H O ), constant sugar-rich diet consumption disrupts microbial homeostasis shifting toward cariogenic community. Recently, Streptococcus oralis subsp. tigurinus strain J22, an oral isolate, was identified as a uniquely potent H O producer. Here, we assess whether a high H O -producing commensal streptococcus can modulate the spatial organization and virulence of S. mutans within biofilms. Using an experimental biofilm model, we find that the presence of S. oralis J22 can effectively inhibit the clustering, accumulation, and spatial organization of S. mutans on ex vivo human tooth surface, resulting in significant reduction of enamel demineralization. Notably, the generation of H O via pyruvate oxidase (SpxB) from S. oralis J22 is not repressed by sugars (a common repressor in other mitis group streptococci), resulting in enhanced inhibition of S. mutans growth (vs. Streptococcus gordonii). We further investigate its impact on biofilm virulence using an in vivo rodent caries model under sugar-rich diet. Coinfection of S. mutans with S. oralis results in reduced caries development compared to either species infected alone, whereas coinfection with S. gordonii has negligible effects, suggesting that the presence of an efficient, high H O -producer can disrupt S. mutans virulence. This work demonstrates that oral isolates with unusual high H O production may be capable of modulating biofilm cariogenicity in vivo. The findings also highlight the importance of bacterial antagonistic interactions within polymicrobial communities in health and in disease-causing state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/omi.12394 | DOI Listing |
mSystems
January 2025
Institute of Animal Science, University of Hohenheim, Stuttgart, Germany.
The continuous interaction between phages and their respective hosts has resulted in the evolution of multiple bacterial immune mechanisms. However, the diversity and prevalence of antiviral defense systems in complex communities are still unknown. We therefore investigated the diversity and abundance of viral defense systems in 3,038 high-quality bacterial and archaeal genomes from the rumen.
View Article and Find Full Text PDFJ Microorg Control
January 2025
S&RA Center, LG H&H (LG Household & Healthcare).
With the rise of the clean beauty trend in the cosmetics and personal care industry, consumers' interest in cosmetic ingredients, especially preservatives, continues to grow. Paraben, previously the most used preservative in cosmetics, has been excluded from many products owing to its potential risks. Therefore, a movement to lower the content of various preservatives is ongoing.
View Article and Find Full Text PDFJ Nutr
January 2025
Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA. Electronic address:
Background: Supplementing choline and docosahexaenoic acid (DHA) to pregnant gilts modified fetal pig hepatic global DNA methylation induced by gestational malnutrition, suggesting that gene expression and regulation and its associated metabolic pathways are affected in the liver of offspring during growth and development.
Objective: To investigate the effect of maternal supplementation of choline, DHA and their interaction on hepatic mRNA expression, miRNA regulation and metabolic pathways in the fetal pigs born to malnourished mothers.
Methods: The abundance of mRNA and miRNA was profiled in fetal liver from sows with undernutrition supplemented with choline and DHA in a 2 × 2 factorial design.
PLoS Genet
January 2025
Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action.
View Article and Find Full Text PDFEnviron Res
January 2025
, UniSA STEM, ScaRCE, University of South Australia, SA 5000, Australia. Electronic address:
Although single bacteria have been applied to the Polycyclic Aromatic Hydrocarbons (PAHs) remediation, its efficacy is severely restricted by long degradation periods and low efficacy. A microbial symbiotic system founded by two or more bacterial strains may be an alternative to traditional remediation approaches. Its construction is, however, hampered by antagonistic interactions and remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!