Dilute Hybrid Electrolyte for Low-Temperature Aqueous Sodium-Ion Batteries.

ChemSusChem

Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266800, People's Republic of China.

Published: December 2022

A hybrid electrolyte based on low-concentration sodium nitrate with glycerol as an additive was proposed for aqueous sodium-ion batteries (ASIBs) towards low-temperature performance. Based on this dilute hybrid electrolyte and configured by bimetallic Prussian blue analogue (Ni ZnHCF) cathode and 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) anode, the full cell demonstrated surprising cycle performance with a specific capacity of 60 mAh g (>800 cycles) and achieved prominent performance at low temperature. Glycerol effectively expanded the electrochemical stability window of the hybrid electrolyte to 2.7 V from formation of strong hydrogen bonds with water molecules and realized the operation of the cell at low temperature, delivering a stable reversible capacity of 40 mAh g at -10 °C. The hybrid electrolyte of glycerol-water provides a new alternative in development of low-cost, long-lifespan, and low-temperature ASIBs and other aqueous battery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202201362DOI Listing

Publication Analysis

Top Keywords

hybrid electrolyte
20
dilute hybrid
8
aqueous sodium-ion
8
sodium-ion batteries
8
low temperature
8
electrolyte
5
electrolyte low-temperature
4
low-temperature aqueous
4
hybrid
4
batteries hybrid
4

Similar Publications

Anode-free aqueous zinc metal batteries (AZMBs) offer significant potential for energy storage due to their low cost and environmental benefits. TiCT MXene provides several advantages over traditional metallic current collectors like Cu and Ti, including better Zn plating affinity, lightweight, and flexibility. However, self-freestanding MXene current collectors in AZMBs remain underexplored, likely due to challenges with Zn deposition reversibility.

View Article and Find Full Text PDF

Constructing an Organic-Inorganic Hybrid Solid-Electrolyte Interface In Situ via an Organo-Polysulfide Electrolyte Additive for Lithium-Sulfur Batteries.

ACS Appl Mater Interfaces

January 2025

School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, China.

Lithium (Li) metal's extremely high specific energy and low potential make it critical for high-performance batteries. However, uncontrolled dendrite growth and an unstable solid-electrolyte interphase (SEI) during repeated cycling still seriously hinder its practical application in Li metal batteries. Herein, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer using two kinds of organo-polysulfides with different sulfur chain lengths [bis(3-(triethoxysilyl)propyl)disulfide (Si-O-2S) and bis(3-(triethoxysilyl)propyl)tetrasulfide (Si-O-4S)] as the additives in the electrolyte.

View Article and Find Full Text PDF

NH-Modulated Cathodic Interfacial Spatial Charge Redistribution for High-Performance Dual-Ion Capacitors.

Nanomicro Lett

January 2025

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.

Compared with Zn, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn/NH co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CFSO)-NHCFSO electrolyte, high-reactive Zn and small-hydrate-sized NH(HO) induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement.

View Article and Find Full Text PDF

Unstable solid-electrolyte interphase (SEI) film resulting from chemically active surface state and huge volume fluctuation limits the development of Si-based anode materials in lithium-ion batteries. Herein, a photo-initiated polypyrrole (PPy) coating is manufactured on Si nanoparticles to guide the in situ generation of PPy-integrated hybrid SEI film (hSEI). The hSEI film shows excellent structure stability and optimized component composition for lithium storage.

View Article and Find Full Text PDF

The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!