Accurate control over the coordination circumstances of single-atom catalysts (SACs) is decisive to their intrinsic activity. Here, two single-site heterogeneous organometallic catalysts (SHOCs), Cp*Ir-L/GDY (L = OH and Cl ; Cp* = pentamethylcyclopentadienyl), with the fine-tuned local coordination and electronic structure of Ir sites, are constructed by anchoring Cp*Ir complexes on graphdiyne (GDY) matrix via a one-pot procedure. The spectroscopic studies and theoretical calculations indicate that the Ir atoms in Cp*Ir-Cl/GDY and Cp*Ir-OH/GDY have a much higher oxidation state than Ir in the SAC Ir/GDY. As a proof-of-principle demonstration, the GDY-supported SHOCs are used for formic acid dehydrogenation, which display a fivefold enhancement of catalytic activity compared with SAC Ir/GDY. The kinetic isotope effect and in situ Fourier-transform infrared studies reveal that the rate-limiting step is the β-hydride elimination process, and Cp* on the Ir site accelerates the β-hydride elimination reaction. The GDY-supported SHOCs integrate the merits of both SACs and molecular catalysts, wherein the isolated Ir anchored on GDY echoes with SACs' behavior, and the Cp* ligand enables precise structural and electronic regulation like molecular catalysts. The scheme of SHOCs adds a degree of freedom in accurate regulation of the local structure, the electronic property, and therefore the catalytic performance of single-atom catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202203442DOI Listing

Publication Analysis

Top Keywords

single-site heterogeneous
8
heterogeneous organometallic
8
organometallic catalysts
8
single-atom catalysts
8
sac ir/gdy
8
gdy-supported shocs
8
β-hydride elimination
8
molecular catalysts
8
catalysts
6
catalysts embedded
4

Similar Publications

The direct transformation of methane into C oxygenates such as acetic acid selectively using molecular oxygen (O) is a significant challenge due to the chemical inertness of methane, the difficulty of methane C-H bond activation/C-C bond coupling and the thermodynamically favored over-oxidation. In this study, we have successfully developed a porous aluminium metal-organic framework (MOF)-supported single-site mono-copper(ii) hydroxyl catalyst [MIL-53(Al)-Cu(OH)], which is efficient in directly oxidizing methane to acetic acid in water at 175 °C with a remarkable selectivity using only O. This heterogeneous catalyst achieved an exceptional acetic acid productivity of 11 796 mmol mol h in 9.

View Article and Find Full Text PDF

Single-Site Catalyst for the Synthesis of Disentangled Ultra-High-Molecular-Weight Polyethylene.

Polymers (Basel)

January 2025

Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China.

Disentangled ultra-high-molecular-weight polyethylene (-UHMWPE) solves the problem of the difficult processing of traditional UHMWPE caused by entanglements between molecular chains. In this review, we look into the innovative realm of nascent disentangled UHMWPE, concentrating on the recent advances achieved through the in situ polymerization of ethylene by single-site catalysts. The effect of single-site catalysts and polymerization conditions on the molecular characteristics is discussed in detail from the perspective of mechanism and DFT calculations.

View Article and Find Full Text PDF

Human tumors are diverse in their natural history and response to treatment, which in part results from genetic and transcriptomic heterogeneity. In clinical practice, single-site needle biopsies are used to sample this diversity, but cancer biomarkers may be confounded by spatiogenomic heterogeneity within individual tumors. Here we investigate clonally expressed genes as a solution to the sampling bias problem by analyzing multiregion whole-exome and RNA sequencing data for 450 tumor regions from 184 patients with lung adenocarcinoma in the TRACERx study.

View Article and Find Full Text PDF

On the Tracks to "Smart" Single-Atom Catalysts.

J Am Chem Soc

January 2025

Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 134127Trieste, Italy.

Despite their enormous impact in modern heterogeneous catalysis, single-atom catalysts (SACs) continue to puzzle the catalysis community, which often struggles to draw correct conclusions in SAC-catalyzed experiments. In many cases, the reasons for such an uncertainty originate from the lack of knowledge of the exact single-atom evolution under operative conditions and the fundamental factors controlling the fate of the single atom in relation to the catalytic mechanism. This has led to confusion also about correct definition and terminology, where the coined term reflects the difficulty in defining the true active species as well as in obtaining long-range ordered homogeneous supports [Chi, S.

View Article and Find Full Text PDF

Background: Therapeutic options for mild hidradenitis suppurativa (HS) represent a significant gap in the current treatment landscape, with no FDA approved therapies for early stage HS. Topical JAnus Kinase inhibitors (JAKi) are a compelling option due to the known upregulation of inflammatory JAK signaling in HS lesions and the recent success of systemic JAKi for moderate to severe HS.

Objectives: This is a pilot, single-site, open-label, prospective 24-week clinical trial with topical ruxolitinib (NCT04414514).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!