Acupuncture stimulation can protect the brain against caffeine-induced sleep disruption. This study investigated whether electroacupuncture stimulation acupuncture point HT7 alleviates sleep disruption by regulating mBDNF and ER stress in the medial septum. Acute exposure to caffeine (15 mg/kg, i.p.) increased the wake time and decreased REM sleep, which HT7 stimulation alleviated. HT7 stimulation ameliorated the acute caffeine exposure-induced increase in the expression of BiP, an endoplasmic reticulum stress response protein, in the rat medial septum. Interestingly, HT7 stimulation induced the expression of mBDNF and pTrkB in the medial septum. The next experiment investigated whether TrkB phosphorylated by HT7 stimulation induced BiP expression in the rat medial septum. Before electroacupuncture stimulation at HT7, ANA-12 was administered to caffeine-treated rats. In rats administered ANA-12 in the medial septum, HT7 stimulation did not reduce BiP expression. These findings suggest that HT7 stimulation improves wake time and REM sleep dysfunction by regulating the BDNF-mediated endoplasmic reticulum stress response in the medial septum. These results indicate that the alleviation of endoplasmic reticulum stress in the medial septum by HT7 stimulation and the subsequent amelioration of insomnia may depend on phosphorylated TrkB activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.113724 | DOI Listing |
Brain Res Bull
December 2024
Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China. Electronic address:
Post traumatic stress disorder (PTSD) is characterized by anxiety, excessive fear, distress, and weakness as symptoms of a psychiatric disorder. However, the mechanism associated with its symptoms such as anxiety-like behaviors is not well understood. It is aimed to investigate the underlying mechanisms of the medial septum (MS)-medial habenula (MHb) neural circuit modulating the anxiety-like behaviors of PTSD mice through in vivo fiber photometry recording, optogenetics, behavioral testing by open-field and elevated plus maze, fluorescent gold retrograde tracer technology, and viral tracer technology.
View Article and Find Full Text PDFDent Res J (Isfahan)
November 2024
Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran.
Background: The ethmoid roof separates the ethmoid cells from the anterior cranial fossa. From the medial side, the roof of the ethmoid is connected to the lateral lamella of the ethmoid plate, which is the thinnest bone at the base of the skull and is most vulnerable to damage during endoscopic surgeries. The purpose of this study is to investigate the height of the lateral lamella in patients with hypoplasia/aplasia of the paranasal sinuses and deviation of the nasal septum using reconstructed multiplanar images by cone-beam computed tomography (CBCT).
View Article and Find Full Text PDFNMR Biomed
February 2025
Neurosurgery Department, Medical Faculty, Yıldırım Beyazıt University, Ankara, Türkiye.
Purpose: We aimed to characterize and further understand CSF circulation and outflow of rabbits. To our knowledge, there is no research on contrast material-enhanced MR cisternography (CE-MRC) with T1 and T2 mapping in the rabbit model using a clinical 3-T MR unit without a stereotaxic frame.
Materials And Methods: Twenty-one rabbits were included in the study.
Ophthalmic Plast Reconstr Surg
December 2024
Department of Oculoplastic, Orbital and Lacrimal Surgery, Aichi Medical University Hospital.
Purpose: To examine the anatomy of the orbital septum posterior to the medial canthal tendon area.
Materials And Methods: We performed 3 anatomical dissections in the present study. The first one was a microscopic study in which exenterated specimens from 6 Japanese cadavers (age from 77 to 93 years at death) were cut inferno-horizontally, including the Müller muscle, medial rectus pulley, and lateral rectus pulley, and stained with Masson's trichrome.
Hippocampus
January 2025
Institute of Experimental Medicine, HUN-REN, Budapest, Hungary.
My most important contribution to research on the hippocampus was the discovery that certain phylogenetically ancient subcortical nuclei that carry information about motivation, emotions and autonomic state exert their profound effects on hippocampal functions by selectively innervating interneurons. Diverse effects on network activity patterns and plasticity can be achieved via activating or inhibiting these functionally distinct interneuron types. In the following, I will present the series of serendipitous events that prompted me to shift my research interest from the visual cortex and the basal ganglia to the hippocampus and its subcortical control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!