Myricitrin is a natural polyhydroxy flavonoid and is mainly derived from the bark and leaves of the Chinese Bayberry tree (Myrica rubra). It has different pharmacological activities, including antioxidative, anti-inflammatory, hypoglycemic, antiviral, liver protection and cholagogue properties, and may be added to foods, pharmaceuticals, and cosmetic products for antioxidant purposes. In this study, the interaction mechanism between myricitrin and human serum albumin (HSA) was investigated using spectroscopic methods, molecular docking techniques, and molecular dynamic simulations. We showed that the HSA/myricitrin interaction exhibited a static fluorescence quenching mechanism, and that binding processes were spontaneous in nature, with the main forces exemplified by hydrogen bonding, hydrophobic interactions, and electrostatic interactions. Fluorescence spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, synchronous fluorescence spectroscopy, three-dimensional (3D) fluorescence spectroscopy, micro-Fourier transform infrared spectroscopy (micro-FTIR), and circular dichroism (CD) spectroscopy showed that myricitrin binding altered the HSA conformation to some extent. Competitive binding and molecular docking studies showed that the preferred binding of myricitrin on HSA was in the sub-structural domain IIA (Site I); molecular dynamic simulations revealed that myricitrin interacted with HSA to produce a well stabilized complex, and it also generated a conformational change in HSA. The antioxidant capacity of the HSA-myricitrin complex was reduced when compared with free myricitrin. The identification of HSA-myricitrin binding mechanisms provides valuable insights for the application of myricitrin to the food and pharmaceutical industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2022.121871 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!