Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jclinane.2022.110962 | DOI Listing |
J Chem Theory Comput
December 2024
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
We present an application of our new theoretical formulation of quantum dynamics, moment propagation theory (MPT) (Boyer et al., J. Chem.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China.
Collective strong light-matter coupling provides a versatile means to manipulate physicochemical properties of molecules and materials. Understanding collective polaritonic dynamics is hindered by the macroscopic number of molecules interacting collectively with photonic modes. We develop a many-body theory to investigate the spectroscopy and dynamics of a molecular ensemble embedded in an optical cavity in the collective strong coupling regime.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
In simulations, particles are traditionally treated as rigid platforms with variable sizes, shapes, and interaction parameters. While this representation is applicable for rigid core platforms, particles consisting of soft platforms (e.g.
View Article and Find Full Text PDFEur Radiol
December 2024
Medical Oncology Department, Hospital Clinico Universitario de Valencia-INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain.
Background: Definitive chemoradiation is the primary treatment for locally advanced head and neck carcinoma (LAHNSCC). Optimising outcome predictions requires validated biomarkers, since TNM8 and HPV could have limitations. Radiomics may enhance risk stratification.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
School of Computer and Control Engineering, Yantai University, Yantai, China.
Background: Structural magnetic resonance imaging (sMRI) can reflect structural abnormalities of the brain. Due to its high tissue contrast and spatial resolution, it is considered as an MRI sequence in diagnostic tasks related to Alzheimer's disease (AD). Thus far, most studies based on sMRI have only focused on pathological changes in disease-related brain regions in Euclidean space, ignoring the association and interaction between brain regions represented in non-Euclidean space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!