Exosomes in bone remodeling and breast cancer bone metastasis.

Prog Biophys Mol Biol

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India. Electronic address:

Published: November 2022

Exosomes are endosome-derived microvesicles that carry cell-specific biological cargo, such as proteins, lipids, and noncoding RNAs (ncRNAs). They play a key role in bone remodeling by enabling the maintenance of a balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Recent evidence indicates that exosomes disrupt bone remodeling that occurs during breast cancer (BC) progression. The bone is a preferred site for BC metastasis owing to its abundant osseous reserves. In this review, we aimed to highlight the roles of exosomes derived from bone cells and breast tumor in bone remodeling and BC bone metastasis (BCBM). We also briefly outline the mechanisms of action of ncRNAs and proteins carried by exosomes secreted by bone and BCBM. Furthermore, this review highlights the potential of utilizing exosomes as biomarkers or delivery vehicles for the diagnosis and treatment of BCBM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbiomolbio.2022.09.008DOI Listing

Publication Analysis

Top Keywords

bone remodeling
16
bone
10
breast cancer
8
bone metastasis
8
exosomes
6
exosomes bone
4
remodeling
4
remodeling breast
4
cancer bone
4
metastasis exosomes
4

Similar Publications

Background: Currently, the pathophysiology of new bone formation in radiographic axial spondyloarthritis (r-axSpA) remains unclear. Cellular elements and their secreted bone turnover markers might be one of the underlying mechanisms that drive the new bone formation. Our study aimed to investigate the role of bone turnover markers in r-axSpA patients with fatty lesions.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Bioceramics for Guided Bone Regeneration: A Multicenter Randomized Controlled Trial.

Clin Implant Dent Relat Res

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Objectives: To compare the clinical effectiveness of a novel bioceramic (BC) with a control xenograft (BO) for guided bone regeneration (GBR) performed simultaneously with implant placement.

Materials And Methods: This clinical study enrolled patients with insufficient bone volume who required GBR during implant placement to increase bone width using either BC or BO. Outcome measures included a dimensional reduction in buccal bone thickness measured by cone beam computed tomography performed immediately post-surgery and at 6 months postoperatively (ΔHBBT), soft tissue healing at 14 days, 1 month, and 6 months postoperatively, and complications rates.

View Article and Find Full Text PDF

Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.

View Article and Find Full Text PDF

OI, or bone brittle disease, is characterized by increased mineralization of bone matrix independently of clinical severity. So, a beneficial effect of antiresorptive treatments such as bisphosphonates (BP) is questionable. We aim to compare the bone matrix characteristics before and after BP pamidronate (PAM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!