Interspecific hybridization in Cucurbita crops (squash) is desirable for widening genetic variation and for the introgression of useful alleles. Immature embryos generated from these wide crosses must be regenerated using appropriate embryo rescue techniques. Although this technique is well established for many crops, a detailed description of the appropriate methodology for squash that would allow its routine application is lacking. Here, we describe an embryo rescue protocol useful for interspecific hybridization of C. pepo and C. moschata. To identify viable combinations for embryo rescue, 24 interspecific crosses were performed. Fruit set was obtained from twenty-two crosses, indicating a 92% success rate. However, most of the fruits obtained were parthenocarpic, with seeds devoid of embryos (empty seeds). Only one cross combination contained immature embryos that could be regenerated using basal plant growth media. A total of 10 embryos were rescued from the interspecific F1 fruit, and the success rate of embryo rescue was 80%. The embryo rescue protocol developed here will be useful for interspecific hybridization in squash breeding programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/64071 | DOI Listing |
Int J Nanomedicine
December 2024
Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China.
Introduction: The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood.
Methods: This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos.
J Dent Res
December 2024
Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Both the upper and lower jaws develop from cranial neural crest cells (CNCCs) populating the first pharyngeal arch in all gnathostomes. Previous studies showed that the Edn1/Ednra-Dlx5/Dlx6-Hand2 signaling pathway is necessary for lower jaw formation and that ectopic expression of or throughout the CNCCs partly transformed the upper jaw to lower jaw structures, but the molecular mechanisms regulating upper jaw development remain unclear. Here we show that the basic helix-loop-helix transcription factor Twist1 is required for upper jaw development.
View Article and Find Full Text PDFCell Biosci
December 2024
Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Background: c-Jun is a key regulator of gene expression. Through the formation of homo- or heterodimers, c-JUN binds to DNA and regulates gene transcription. While c-Jun plays a crucial role in embryonic development, its impact on nervous system development in higher mammals, especially for some deep structures, for example, thalamus in diencephalon, remains unclear.
View Article and Find Full Text PDFFEBS J
December 2024
Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, China.
Cleft palate is one of the most common birth defects in humans, and palate morphogenesis depends on epithelial-mesenchymal interaction. In this study, we report that ablation of Isl1 in the epithelium leads to complete cleft palate. A significant reduction in mesenchymal cell proliferation was detected in the Isl1 mutant palates, but there was no significant difference in apoptosis between wild-type and mutant embryos.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
During embryogenesis, vertebral axial patterning is intricately regulated by multiple signaling networks. This study elucidates the role of protogenin (Prtg), an immunoglobulin superfamily member, in vertebral patterning control. Prtg knockout (Prtg) mice manifest anterior homeotic transformations in their vertebral columns and significant alterations in homeobox (Hox) gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!