Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: White matter hyperintensities (WMH) are associated with impaired cognition and increased falls risk. Resistance training (RT) is a promising intervention to reduce WMH progression, improve executive functions, and reduce falls. However, the underlying neurobiological process by which RT improves executive functions and falls risk remain unclear. We hypothesized that: 1) RT reduces the level of WMH-related disruption to functional networks; and 2) reduced disruption to the sensorimotor and attention networks will be associated with improved executive function and reduced falls risk.
Objective: Investigate the impact of 52 weeks of RT on WMH-related disruption to functional networks.
Methods: Thirty-two older females (65-75 years) were included in this exploratory analysis of a 52-week randomized controlled trial. Participants received either twice-weekly RT or balance and tone training (control). We used lesion network mapping to assess changes in WMH-related disruption to the sensorimotor, dorsal attention, and ventral attention networks. Executive function was measured using the Stroop Colour-Word Test. Falls risk was assessed using the Physiological Profile Assessment (PPA) and the foam sway test.
Results: RT significantly reduced the level of WMH-related disruption to the sensorimotor network (p = 0.012). Reduced disruption to the dorsal attention network was associated with improvements in Stroop performance (r = 0.527, p = 0.030). Reduced disruption to the ventral attention network was associated with reduced PPA score (r = 0.485, p = 0.049)Conclusion:RT may be a promising intervention to mitigate WMH-related disruption to the sensorimotor network. Additionally, reducing disruption to the dorsal and ventral attention networks may contribute to improved executive function and reduced falls risk respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-220142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!