Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (X-PAHs), which generally produced from photochemical and thermal reactions of parent PAHs, widely exist in the environment. They are semi-volatile organic chemicals (SVOCs) and the partitioning between gas/particulate phases affects their environmental migration, transformation and fate, which further impacts their toxicity and health risk to human. However, there is a large data missing of the experimental distribution ratio in the atmospheric particulate phase (f), especially for X-PAHs. In this study, we first checked the correlation between experimental f values of 53 PAH derivatives and their octanol-air partitioning coefficients (log K), which is frequently used to characterize the distribution of chemicals in organic phase, and yielded R = 0.803. Then, quantum chemical descriptors derived from molecular structural optimization by M06-2X/6-311 +G (d,p) method were further employed to develop Quantitative Structure-Property Relationship (QSPR) model. The model contains two descriptors, the average molecular polarizability (α) and the equilibrium parameter of molecular electrostatic potential (τ), and yields better performance with R = 0.846 and RMSE = 0.122. The mechanism analysis and validation results by different strategies prove that the model can reveal the molecular properties that dominate the distribution between gas and particulate phases and it can be used to predict f values of other PAHs/X-PAHs, providing basic data for their environmental ecological risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.114111DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
8
aromatic hydrocarbons
8
halogenated derivatives
8
atmospheric particulate
8
particulate phase
8
prediction study
4
distribution
4
study distribution
4
distribution polycyclic
4
hydrocarbons halogenated
4

Similar Publications

Draft genome sequence of sp. SA01 isolated from seedlings collected in Cape Cod (USA).

Microbiol Resour Announc

January 2025

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.

A draft genome was generated for a strain of closely related to sp. ENV421 isolated from plants of smooth cordgrass germinated from seeds collected in a salt marsh in Cape Cod (USA). Genomic DNA was sequenced using paired-end Illumina technologies.

View Article and Find Full Text PDF

This review explores biochar's potential as a sustainable and cost-effective solution for remediating organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs) and pesticides, in water. Biochar, a carbon-rich material produced from biomass pyrolysis, has demonstrated adsorption efficiencies exceeding 90% under optimal conditions, depending on the feedstock type, pyrolysis temperature, and functionalization. High surface area (up to 1500 m/g), porosity, and modifiable surface functional groups make biochar effective in adsorbing a wide range of contaminants, including toxic metals, organic pollutants, and nutrients.

View Article and Find Full Text PDF

Magnetic optimizing surface-enhanced Raman scattering (SERS) strategy of detection and in-situ monitoring of photodegradation of Benzo[a]pyrene in water.

Anal Chim Acta

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:

Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.

View Article and Find Full Text PDF

Wintering loons in South Korea face an ongoing threat from polycyclic aromatic hydrocarbons: Shifting sources and potential DNA damage.

Environ Pollut

January 2025

Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.

View Article and Find Full Text PDF

Measurements of polycyclic aromatic hydrocarbons (PAHs) were simultaneously carried out at three different urban locations in Croatia (Zagreb, Slavonski Brod and Vinkovci) characterized as urban residential (UR), urban industrial (UI) and urban background (UB), respectively. This was done in order to determine seasonal and spatial variations, estimate dominant pollution sources for each area and estimate the lifetime carcinogenic health risks from atmospheric PAHs. Mass concentrations of PAHs showed seasonal variation with the highest values during the colder period and the lowest concentration during the warmer period of the year.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!