The Holliday junction (HJ) branch migrator RuvAB complex plays a fundamental role during homologous recombination and DNA damage repair, and therefore, is an attractive target for the treatment of bacterial pathogens. Pseudomonas aeruginosa (P. aeruginosa, Pa) is one of the most common clinical opportunistic bacterial pathogens, which can cause a series of life-threatening acute or chronic infections. Here, we performed a high throughput small-molecule screening targeting PaRuvAB using the FRET-based HJ branch migration assay. We identified that corilagin, bardoxolone methyl (BM) and 10-(6'-plastoquinonyl) decyltriphenylphosphonium (SKQ1) could efficiently inhibit the branch migration activity of PaRuvAB, with IC values of 0.40 ± 0.04 μM, 0.38 ± 0.05 μM and 4.64 ± 0.27 μM, respectively. Further biochemical and molecular docking analyses demonstrated that corilagin directly bound to PaRuvB at the ATPase domain, and thus prevented ATP hydrolysis. In contrast, BM and SKQ1 acted through blocking the interactions between PaRuvA and HJ DNA. Finally, these compounds were shown to increase the susceptibility of P. aeruginosa to UV-C irradiation. Our work, for the first time, reports the small-molecule inhibitors of RuvA and RuvB from any species, providing valuable chemical tools to dissect the functional role of each individual protein in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2022.117022DOI Listing

Publication Analysis

Top Keywords

small-molecule inhibitors
8
pseudomonas aeruginosa
8
bacterial pathogens
8
branch migration
8
identification small-molecule
4
inhibitors dna
4
dna repair
4
repair proteins
4
proteins ruvab
4
ruvab pseudomonas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!