Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The expansion of large-scale nuclear power causes a substantial volume of radioactive wastewater containing uranium to be released into the environment. Because of uranium's toxicity and bioaccumulation, it is critical to develop the efficient and sustainable materials for selective removal of uranium (VI). Herein, a regenerable anti-biofouling nano zero-valent iron doped porphyrinic zirconium metal-organic framework (NZVI@PCN-224) heterojunction system was successfully fabricated. Due to the Schottky-junction effect at the NZVI/MOF interface, the NZVI nanomaterial immobilized on PCN-224 could improve interfacial electron transfer and separation efficiency, and enhance entire reduction of highly soluble U(VI) to less soluble U(IV), involving photocatalytic reduction and chemical reduction. Meanwhile, the photocatalytic effect also prompts the NZVI@PCN-224 to produce more biotoxic reactive oxygen species (ROS), resulting in high anti-microbial and anti-algae activities. Under dark conditions, NZVI@PCN-224 with a large specific surface area could provide sufficient oxo atoms as the uranium binding sites and show the highest uranium-adsorbing capability of 57.94 mg/g at pH 4.0. After eight adsorption-desorption cycles, NZVI@PCN-224 still retained a high uranium adsorption capacity of 47.98 mg/g and elimination efficiency (91.72%). This sorption/reduction/anti-biofouling synergistic strategy of combining chelation, chemical reduction and photocatalytic performance inspires new insights for highly efficient treatment of liquid radioactive waste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.130018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!