Hederagenin ameliorates cisplatin-induced acute kidney injury via inhibiting long non-coding RNA A330074k22Rik/Axin2/β-catenin signalling pathway.

Int Immunopharmacol

Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China. Electronic address:

Published: November 2022

Background: Acute kidney injury (AKI), a kidney disease with high morbidity and mortality, is characterized by a dramatic decline in renal function. Hederagenin (HDG), a pentacyclic triterpenoid saponin isolated from astragalus membranaceus, has been shown to have significant anti-inflammatory effects on various diseases. However, the effects of HDG on renal injury and inflammation in AKI has not been elucidated.

Methods: In this research, mice model of AKI was established by intraperitoneal injection of cisplatin in vivo, the inflammatory model of renal tubular epithelial cells was established by LPS stimulation in vitro, and HDG was used to intervene in vitro and in vivo models. Transcriptome sequencing was used to analyze the alterations of LncRNA and mRNA expression in AKI model and LncRNA-A330074k22Rik (A33) knockdown cells, respectively. Renal in situ electrotransfer knockdown plasmid was used to establish mice model of AKI with low expression of A33 in kidney.

Results: The results showed that HDG effectively alleviate cisplatin-induced kidney injury and inflammation in mice. Transcriptome sequencing results showed that multiple LncRNAs in kidney of AKI model exhibited significant changes, among which LncRNA-A33 had the most obvious change trend. Subsequent results showed that A33 was highly expressed in kidney of AKI mice and LPS-induced renal tubular cells. After in situ renal electroporation knockdown plasmid down-regulated A33 in kidney of AKI mice, it was found that inhibition of A33 could significantly relieve cisplatin-induced kidney injury and inflammation of AKI, while HDG could effectively suppress the expression of A33 in vitro and in vivo, respectively. Subsequently, transcriptome sequencing was again used to analyze the changes in mRNA expression of renal tubular cells after A33 knockdown by siRNA. The results showed that a large number of inflammation-related signaling pathways were down-regulated, Axin2 and its downstream β-catenin signal were significantly inhibited. Cell recovery test showed that HDG inhibited Axin2/β-catenin signal by down-regulating A33, and improved kidney injury and inflammation of AKI.

Conclusion: Taken together, HDG significantly ameliorated cisplatin-induced kidney injury through LncRNA-A330074k22Rik/Axin2/β-catenin signal axis, which providing a potential therapeutic approach for the treatment of AKI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.109247DOI Listing

Publication Analysis

Top Keywords

kidney injury
24
injury inflammation
16
renal tubular
12
transcriptome sequencing
12
cisplatin-induced kidney
12
kidney aki
12
kidney
10
aki
10
acute kidney
8
inflammation aki
8

Similar Publications

Background: The Veterans Aging Cohort Study (VACS) Index is a summary measure of routinely obtained clinical variables that predicts numerous health outcomes. Since there are currently no tools to predict acute kidney injury (AKI) in persons with HIV (PWH), we investigated the association of preadmission VACS Index with hospital AKI in PWH.

Methods: We conducted an observational study of PWH hospitalized in a New York City health system between 2010-2019.

View Article and Find Full Text PDF

Introduction: During hemodialysis (HD), the presence of clots in the dialyzer can diminish the effective surface area of the device. In severe cases, clot formation in the circuit can halt treatment and lead to blood loss in the system. Thus, ensuring proper anticoagulation during HD is crucial to prevent clotting in the circuit while safeguarding the patient from bleeding risks.

View Article and Find Full Text PDF

Haemolysis occurring during cardiac surgery with cardiopulmonary bypass (CPB) is assumed to be a risk factor for postoperative acute kidney injury (AKI). Plasma alpha-1 microglobulin (A1M) may have a protective role as haem scavenger. The aim of this study was to evaluate the association between AKI and the degree of haemolysis and the course of A1M concentrations during cardiac surgery, respectively.

View Article and Find Full Text PDF

Mitigation of depleted uranium-induced mitochondrial damage by ethylmalonic encephalopathy 1 protein via modulation of hydrogen sulfide and glutathione pathways.

Arch Toxicol

December 2024

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.

Depleted uranium (DU) is a byproduct of uranium enrichment, which can cause heavy-metal toxicity and radiation toxicity as well as serious damage to the kidneys. However, the mechanism of renal injury induced by DU is still unclear. This study aimed to explore the role of ethylmalonic encephalopathy 1 (ETHE1) in DU-induced mitochondrial dysfunction and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!