Climate changes and metal contamination are pervasive stressors for soil ecosystems. Mercury (Hg), one of the most toxic metals, has been reported to interact with temperature. However, compared to aquatic biota, little is known about how temperature affects Hg toxicity and bioaccumulation to soil organisms. Here, toxicity and bioaccumulation experiments were replicated at 15 °C, 20 °C, and 25 °C to understand how sub-optimal temperatures affect the toxicokinetics and toxicodynamics of Hg via soil. Genotoxicity and energy reserves were also assessed to disclose potential trade-offs in life-history traits. Results underpin the complexity of temperature-Hg interactions. Survival was determined mainly by toxicokinetics, but toxicodynamics also played a significant role in defining survival probability during early stages. The processes determining survival probability were faster at 25 °C: General Unified Threshold of Survival (GUTS) model identified an earlier/steeper decline in survival, compared to 20 °C or 15 °C, but it also approached the threshold faster. Despite potentiation of Hg genotoxicity, temperature promoted faster detoxification, either increasing toxicokinetics rates or damage repair mechanisms. This metabolism-driven increase in detoxification led to higher depletion of energy reserves and likely triggered stress response pathways. This work emphasized the need for comprehensive experimental approaches that can integrate the multiple processes involved in temperature-metal interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.120209DOI Listing

Publication Analysis

Top Keywords

toxicity bioaccumulation
8
toxicokinetics toxicodynamics
8
energy reserves
8
survival probability
8
survival
5
effects temperatures
4
temperatures mercury
4
mercury toxicity
4
toxicity terrestrial
4
terrestrial isopod
4

Similar Publications

In Situ Phytoremediation of Mine Tailings with High Concentrations of Cadmium and Lead Using (Sapindaceae).

Plants (Basel)

December 2024

Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico.

The waste generated during metal mining activities contains mixtures of heavy metals (HM) that are not biodegradable and can accumulate in the surrounding biota, increasing risk to human and environmental health. Plant species with the capacity to grow and develop on mine tailings can be used as a model system in phytoremediation studies. (L.

View Article and Find Full Text PDF

The contamination of rivers by potentially toxic elements (PTEs) is a problem of global importance. The Valles River is Ciudad Valles' (Central Mexico) main source of drinking water. During the four seasons of the year, water samples (n = 6), sediment samples (n = 6), and plants (n = 10) were taken from three study sites selected based on the presence of anthropogenic activities in the Valles River.

View Article and Find Full Text PDF

Objective: The study aims to assess the overall safety of cultured tilapias in Jeddah City, Saudi Arabia by assessing the impact of infection and anthropogenic pollution on farmed tilapias based on fish sex, body weight, length, and heavy metals contamination.

Materials And Methods: A total of 111 fish were collected from an aquaculture farm in Hada Al-Sham, Jeddah, Saudi Arabia. Physicochemical parameters of water from the culture system were evaluated.

View Article and Find Full Text PDF

Amplification of benzo[a]pyrene toxicity persistence in earthworms by polystyrene nanoplastics: From organismal health to molecular responses.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.. Electronic address:

Typically, nanoplastics (NPs) are contaminated before entering soil, and the impact of NPs on the biotoxicity of Persistent Organic Pollutants (POPs) they carry remains unclear. This study simulated two environmentally relevant scenarios: singular exposure of benzo[a]pyrene (BaP) in soil and exposure via NPs loading (NP-BaP). Correlation analysis and machine learning revealed that injury in earthworms exposed for 28 days was significantly associated with NPs.

View Article and Find Full Text PDF

Differentiated distribution between albumen, yolk and eggshell of parents and metabolites neonicotinoids and their reproductive exposure risk.

J Hazard Mater

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, PR China. Electronic address:

Differential distribution of neonicotinoids (NEOs) in albumen, yolk, and eggshell is a critical factor influencing their bio-accumulative behavior and the subsequent human health risks. However, there is currently no relevant research available. We collected 62 egg samples from 31 sampling sites across China and analyzed the concentrations and characteristics of 12 parents NEOs (p-NEOs) and 8 metabolites NEOs (m-NEOs) in albumen, yolk, and eggshell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!