Vitrification can extend the banking life of articular cartilage (AC) and improve osteochondral transplantation success. Current vitrification protocols require optimization to enable them to be implemented in clinical practice. Sucrose as a non-permeating cryoprotective agent (CPA) and clinical grade chondroitin sulfate (CS) and ascorbic acid (AA) as antioxidants were investigated for their ability to improve a current vitrification protocol for AC. The aim of this study was to assess the impact of sucrose and CS/AA supplementation on post-warming chondrocyte viability in vitrified AC. Porcine osteochondral dowels were randomly vitrified and warmed with one established protocol (Protocol 1) and seven modified protocols (Protocols 2-8) followed by chondrocyte viability assessment. Sucrose supplementation in both vitrification and warming media (Protocol 4) resulted in significantly higher (p = 0.018) post-warming chondrocyte viability compared to the protocol without sucrose (Protocol 1). There was no significant difference (p = 0.298) in terms of post-warming chondrocyte viability between sucrose-supplemented DMEM + CS solution (Protocol 4) and Unisol-CV (UCV) + CS (Protocol 6) solution. Clinical grade CS and AA contributed to similar post-warming chondrocyte viability to previous studies using research grade CS and AA, indicating their suitability for clinical use. The addition of an initial step (step 0) to reduce the initial concentration of CPAs to minimize osmotic effects did not enhance chondrocyte viability in the superficial layer of AC. In conclusion, sucrose-supplemented DMEM + clinical grade CS (Protocol 4) could be an ideal protocol to be investigated for future use in clinical applications involving vitrified AC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cryobiol.2022.09.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!