AI Article Synopsis

  • The biosynthesis of glycosaminoglycans (GAGs) is reduced in inflammatory bowel disease (IBD), leading to weakened gut wall integrity and increased inflammatory responses.
  • D-glucosamine (D-GLU) has shown potential in suppressing oxidative stress and inflammation, and its effect was tested alongside the drug mesalamine (5-ASA) in a rat model of IBD.
  • The combination of D-GLU and 5-ASA significantly reduced colonic inflammation, improved gut health, and had no major side effects, outperforming the individual use of each drug.

Article Abstract

Objective: The level of precursors involved in the biosynthesis of glycosaminoglycan (GAG), glucosamine synthase, and N-acetyl glucosamine (NAG), are significantly reduced in inflammatory bowel disease (IBD). This results in deficient GAG content in mucosa, which eventually disrupt the gut wall integrity, provoking abnormal immunological responses. This is characterized by colossal liberation of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukins (ILs), and reactive oxygen species (ROS) provoking colonic inflammation. D-glucosamine (D-GLU) is reported to suppress oxidative stress, and pro-inflammatory cytokines and acts as a starting material for biosynthesis of NAG. The potential of D-GLU and its combination with mesalamine (5-ASA) was investigated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-instigated IBD in Wistar rats.

Materials And Methods: Standard and test drugs were given orally for 5 d to separate groups of rats. Colonic inflammation was evaluated by disease activity score rate (DASR), colon/body weight ratio, colon length, diameter, colon pH, histological injury, and score. Inflammatory biomarkers IL-1β, TNF-α, along with reduced glutathione (GSH), and malondialdehyde (MDA) were assessed.

Results: Combination of D-GLU + 5-ASA significantly ameliorated severity of colonic inflammation by lowering DASR ( < 0.001) and colon/body weight ratio ( < 0.001), restored the colonic architecture and suppressed the histopathological score ( < 0.001), along with the absence of major adverse reactions. The combination suppressed the levels of inflammatory markers ( < 0.001) and MDA ( < 0.001) while enhancing GSH level ( < 0.001).

Conclusion: In comparison to individual 5-ASA and D-GLU, combination of drugs significantly diminished colitis severity through their combined anti-inflammatory and antioxidant effects by acting on multiple targets simultaneously. The combination holds remarkable potential in the management of IBD.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08923973.2022.2128370DOI Listing

Publication Analysis

Top Keywords

colonic inflammation
12
pre-clinical investigation
4
investigation protective
4
protective nutraceutical
4
nutraceutical d-glucosamine
4
d-glucosamine tnbs-induced
4
tnbs-induced colitis
4
colitis objective
4
objective level
4
level precursors
4

Similar Publications

Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9.

Dev Cell

December 2024

Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China. Electronic address:

The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Longitudinal single-cell RNA sequencing reveals a heterogeneous response of plasma cells to colonic inflammation.

Int J Biol Macromol

January 2025

Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:

A comprehensive understanding of the dynamic changes in plasma cells (PCs) during inflammation remains elusive. In this study, we analyzed the distinct responses of PCs across different phases of inflammation in a dextran sodium sulfate (DSS)-induced mouse colitis model. Six-week-old male C57BL/6 mice were treated with 2.

View Article and Find Full Text PDF

The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.

View Article and Find Full Text PDF

The development of murine bone marrow-derived mast cells expressing functional human MRGPRX2 for and studies.

Front Immunol

January 2025

Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Introduction: A subtype of human mast cells (MCs) found in the skin and to a lesser extent in the lung and gut express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR-X2 (MRGPRX2, mouse counterpart MrgprB2). In addition to drug-induced pseudoallergy and cutaneous disorders, MrgprB2 contributes to ulcerative colitis, IgE-mediated lung inflammation and systemic anaphylaxis. Interestingly, most agonists activate MRGPRX2 with higher potency than MrgprB2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!