Lactic acid bacteria: prominent player in the fight against human pathogens.

Expert Rev Anti Infect Ther

Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India.

Published: November 2022

AI Article Synopsis

  • The human gut microbiome contains over 1000 microbial species, significantly influencing health, with lactic acid bacteria, particularly Lactobacilli, being used for food and potential medical applications.
  • This review examines clinical and experimental research on the effectiveness of Lactobacilli in treating various infections, emphasizing both laboratory and clinical studies.
  • Lactobacilli are considered safe and can modulate the immune system, but further research is needed to understand their mechanisms, effectiveness, demographic impacts, and potential side effects for developing new therapies against antibiotic-resistant pathogens.

Article Abstract

Introduction: The human microbiome is a unique repository of diverse bacteria. Over 1000 microbial species reside in the human gut, which predominantly influences the host's internal environment and plays a significant role in host health. Lactic acid bacteria have long been employed for multiple purposes, ranging from food to medicines. Lactobacilli, which are often used in commercial food fermentation, have improved to the point that they might be helpful in medical applications.

Areas Covered: This review summarises various clinical and experimental evidence on efficacy of lactobacilli in treating a wide range of infections. Both laboratory based and clinical studies have been discussed.

Expert Opinion: Lactobacilli are widely accepted as safe biological treatments and host immune modulators (GRAS- Generally regarded as safe) by the US Food and Drug Administration and Qualified Presumption of Safety. Understanding the molecular mechanisms of lactobacilli in the treatment and pathogenicity of bacterial infections can help with the prediction and development of innovative therapeutics aimed at pathogens which have gained resistance to antimicrobials. To formulate effective lactobacilli based therapy significant research on the effectiveness of different lactobacilli strains and its association with demographic distribution is required. Also, the side effects of such therapy needs to be evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14787210.2022.2128765DOI Listing

Publication Analysis

Top Keywords

lactic acid
8
acid bacteria
8
lactobacilli
6
bacteria prominent
4
prominent player
4
player fight
4
fight human
4
human pathogens
4
pathogens introduction
4
introduction human
4

Similar Publications

Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.

ACS Appl Mater Interfaces

January 2025

Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.

View Article and Find Full Text PDF

Background: Injectable biostimulator treatments stimulate endogenous collagen in aging skin, but whether they act through similar pathways is unknown. This study evaluates two biostimulatory agents' effects on genes, expressed proteins, and respective pathways as potential aging biomarkers and treatment outcomes.

Methods: This 13-week, randomized, single-center, comparative study compared volume change and gene expression stimulated by poly-L-lactic acid (PLLA-SCATM) and calcium hydroxylapatite (CaHA-R) via punch biopsy in the nasolabial fold (NLF).

View Article and Find Full Text PDF

Lactide, possessing two stereocenters and thus three distinct configurations (DD, DL, and LL), serves as a captivating building block for polymers and self-assembly. Notably, polylactide (PLA) exhibits stereocomplexation, displaying heightened interactions between different configurations compared with interactions within the same configuration. This characteristic renders PLA an intriguing subject for investigating self-assembly behavior.

View Article and Find Full Text PDF

Terasi, a traditional Indonesian seafood product made from shrimp, undergoes fermentation facilitated by a consortium of microorganisms, including Lactic Acid Bacteria (LAB) and yeast, which contribute to its distinctive umami flavor. This study investigates the microbial dynamics and production of key metabolites, including γ-aminobutyric acid (GABA), during terasi fermentation. Total Plate Count (TPC) and High-Performance Liquid Chromatography (HPLC) were used to monitor changes in glutamate and GABA levels, with glutamate increasing from 105.

View Article and Find Full Text PDF

Subpopulation-specific gene expression in uncovers distinct metabolic adaptations to wine fermentation.

Curr Res Food Sci

December 2024

Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.

Gene expression is the first step in translating genetic information into quantifiable traits. This study analysed gene expression in 23 strains across six subpopulations of , shaped by anthropization, under winemaking conditions to understand the impact of adaptation on transcriptomic profiles and fermentative performance, particularly regarding lactic acid production. Understanding the gene expression differences linked to lactic acid production could allow a more rational address of biological acidification while optimizing yeast-specific nutritional requirements during fermentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!