Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Outdoor acoustic data often include non-acoustic pressures caused by atmospheric turbulence, particularly below a few hundred Hz in frequency, even when using microphone windscreens. This paper describes a method for automatic wind-noise classification and reduction in spectral data without requiring measured wind speeds. The method finds individual frequency bands matching the characteristic decreasing spectral slope of wind noise. Uncontaminated data from several short-timescale spectra can be used to obtain a decontaminated long-timescale spectrum. This method is validated with field-test data and can be applied to large datasets to efficiently find and reduce the negative impact of wind noise contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0005308 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!