On the design of differential loudspeaker arrays with broadside radiation patterns.

JASA Express Lett

Institut National de la Recherche Scientifique, Énergie, Matériaux et Télécommunications, University of Quebec, Montreal, Québec, Canada

Published: August 2021

Loudspeaker arrays with high directivity are desirable in many acoustic and sound applications to direct sounds into a desired region. One way of designing such arrays is through the differential operator to maximize the directivity factor. However, this method generally works for linear arrays with endfire steering direction and its usage to generate a broadside radiation pattern is restricted to the second-order with three loudspeakers. This paper presents a general approach to the design of differential linear loudspeaker arrays with broadside radiation patterns of any-order. Three methods are presented to find the beamforming filter with design examples provided.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0005760DOI Listing

Publication Analysis

Top Keywords

loudspeaker arrays
12
broadside radiation
12
design differential
8
arrays broadside
8
radiation patterns
8
arrays
5
differential loudspeaker
4
patterns loudspeaker
4
arrays high
4
high directivity
4

Similar Publications

Sound Source Localization Testing in Single-sided Deafness Following Bone Conduction Intervention.

J Vis Exp

December 2024

Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health;

Single-sided deafness (SSD), where there is severe to profound hearing loss in one ear and normal hearing in the other, is a prevalent auditory condition that significantly impacts the quality of life for those affected. The ability to accurately localize sound sources is crucial for various everyday activities, including speech communication and environmental awareness. In recent years, bone conduction intervention has emerged as a promising solution for patients with SSD, offering a non-invasive alternative to traditional air conduction hearing aids.

View Article and Find Full Text PDF

This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate KNaNbO (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 V with outstanding characteristics: (1) a large vibration amplitude of 3.

View Article and Find Full Text PDF

This study investigates auditory localization in children with a diagnosis of hearing impairment rehabilitated with bilateral cochlear implants or hearing aids. Localization accuracy in the anterior horizontal field and its distribution along the angular position of the source were analyzed. Participants performed a localization task in a virtual environment where they could move their heads freely and were asked to point to an invisible sound source.

View Article and Find Full Text PDF

Objectives: While single-sided deafness cochlear implants (SSD-CIs) have now received regulatory approval in the United States, candidate-ear candidacy criteria (no better than 5% word-recognition score) are stricter than for traditional CI candidates (50 to 60% speech recognition, best-aided condition). SSD implantation in our center began before regulatory approval, using a criterion derived from traditional candidacy: 50% consonant-nucleus-consonant (CNC) word-identification score in the candidate ear. A retrospective analysis investigated whether SSD patients exceeding the 5% CNC criterion nevertheless benefitted from a CI as assessed by spatial-hearing tests (speech understanding in noise [SIN] and localization) and by a patient-reported outcome measure quality-of-life instrument validated for patients with CIs.

View Article and Find Full Text PDF

Differential beamforming has attracted much research since it can utilize an array with a small aperture size to form frequency-invariant beampatterns and achieve high directional gains. It has recently been applied to the loudspeaker line array to produce a broadside frequency-invariant radiation pattern. However, designing steerable frequency-invariant beampatterns for the loudspeaker line array has yet to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!