A carbon shell encapsulating a transition metal-based core has emerged as an intriguing type of catalyst structure, but the effect of the shell thickness on the catalytic properties of the buried components is not well known. Here, we present a proof-of-concept study to reveal the thickness effect by carbonizing the isotropic and homogeneous oleylamine (OAm) ligands that cover colloidal MoS. A thermal treatment turns OAm into a uniform carbon shell, while the size of MoS monolayers remains identical. When evaluated toward an acidic hydrogen evolution reaction, the calcined MoS catalysts deliver a volcano-type activity trend that depends on the calcination temperature. Rutherford backscattering spectrometry and depth-profiling X-ray photoelectron spectroscopy consistently provide an accurate quantification of the carbon shell thickness. The same variation pattern of catalytic activity and carbon shell thickness, aided by kinetic studies, is then persuasively justified by the respective limitations of electron and proton conductivities on the two branches of the volcano curve.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650766 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.2c03181 | DOI Listing |
Sci Rep
December 2024
Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-8, Santa Maria, RS, 97105-900, Brazil.
This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.
View Article and Find Full Text PDFZoological Lett
December 2024
Dept. Evolutionary Biology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria.
Boring bryozoans dissolve calcium carbonate substrates, leaving unique borehole traces. Depending on the shell type, borehole apertures and colony morphology can be diagnostic for distinguishing taxa, but to discriminate among species their combination with zooidal morphology is essential. All boring (endolithic) bryozoans are ctenostomes that, along with other boring taxa, are common in benthic communities.
View Article and Find Full Text PDFChem Catal
November 2024
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!