Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mode merging and the creation of exceptional points can be used to create optimum damping in a lined duct, as pointed out by Cremer [Acustica 3, 249-263 (1953)]. The effect of a mean flow has traditionally been analyzed by assuming the Ingard-Myer boundary condition at the wall. For low frequencies, however, the classical boundary condition is a better alternative. This paper shows that this choice removes two problems with the low-frequency solution: the negative real part of the optimum wall impedance and the non-valid solution for the upstream case. Theoretical derivations are complemented by numerical results to support these conclusions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0003546 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!