The enzyme nicotine oxidoreductase (NicA2) is a member of the flavoprotein amine oxidase family that uses a cytochrome c protein (CycN) as its oxidant instead of dioxygen, which is the oxidant used by most other members of this enzyme family. We recently identified a potential binding site for CycN on the surface of NicA2 through rigid body docking [. , (8), 102251]. However, this potential binding interface has not been experimentally validated. In this paper, we used unnatural amino acid incorporation to probe the binding interface between NicA2 and CycN. Our results are consistent with a structural model of the NicA2-CycN complex predicted by protein-protein docking and AlphaFold, suggesting that this is the binding site for CycN on NicA2's surface. Based on additional mutagenesis of potentially redox active residues in NicA2, we propose that electron transfer from NicA2's flavin to CycN's heme occurs without the assistance of a protein-derived wire.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163435PMC
http://dx.doi.org/10.1021/acs.biochem.2c00472DOI Listing

Publication Analysis

Top Keywords

binding interface
12
electron transfer
8
nicotine oxidoreductase
8
potential binding
8
binding site
8
site cycn
8
binding
5
interface electron
4
transfer nicotine
4
oxidoreductase cytochrome
4

Similar Publications

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Structural basis of Epstein-Barr virus gp350 receptor recognition and neutralization.

Cell Rep

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China. Electronic address:

Epstein-Barr virus (EBV) is an oncogenic virus associated with multiple lymphoid malignancies and autoimmune diseases. During infection in B cells, EBV uses its major glycoprotein gp350 to recognize the host receptor CR2, initiating viral attachment, a process that has lacked direct structural evidence for decades. In this study, we resolved the structure of the gp350-CR2 complex, elucidated their key interactions, and determined the site-specific N-glycosylation map of gp350.

View Article and Find Full Text PDF

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

The ion binding to the lipid/water interface can substantially influence the structural, functional, and dynamic properties of the cell membrane. Despite extensive research on ion-lipid interactions, the specific effects of ion binding on the polarity and hydration at the lipid/water interface remain poorly understood. This study explores the influence of three biologically relevant divalent cations─Mg, Ca, and Zn─on the depth-dependent interfacial polarity and hydration of zwitterionic DPPC lipid in its gel phase at room temperature.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!