Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cathode coatings have received extensive attention due to their ability to delay electrochemical performance degradation in lithium-ion batteries. However, the development of cathode coatings possessing high ionic conductivity and good interfacial stability with cathode materials has proven to be a challenge. Here, we performed first-principles computational studies on the phase stability, thermodynamic stability, and ionic transport properties of LiMXOF (M-X = Al-P and Mg-S) used as cathode coatings. We find that the candidate coatings are thermodynamically metastable and can be synthesized experimentally. The coating materials possess high oxidative stability, with the materials predicted to decompose above 4.2 V, suggesting that they have good electrochemical stability under a high-voltage cathode. In addition, the candidate coatings exhibit significant chemical stability when in contact with oxide cathodes. Finally, we have studied the Li-ion transport paths and migration barriers of LiMXOF (M-X = Al-P and Mg-S) and calculated the low migration barriers to be 0.19 and 0.09 eV, respectively. Our findings indicate that LiMXOF (M-X = Al-P and Mg-S) are promising cathode coatings, among which LiAlPOF has been experimentally confirmed. The theoretical cathode coating computational methods presented here can be extended to the solid-state battery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c12732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!