A comparative study of mouse bone marrow mesenchymal stem cells isolated using three easy-to-perform approaches.

FEBS Open Bio

Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China.

Published: December 2022

Mouse bone marrow mesenchymal stem cells (mBM-MSCs) are important for preclinical tissue regeneration and repair studies. In the present study, we isolated mBM-MSCs using three easy-to-perform methods (whole bone marrow-adherent culture, density-gradient centrifugation, and bone digestion), and then compared the morphology, proliferation, differentiation, and paracrine factor profiles of the isolated mBM-MSCs. Of these three isolation methods, the bone digestion method resulted in the highest quantity of mBM-MSCs with high growth potential and moderate differentiation. Conversely, the mBM-MSCs isolated through the whole bone marrow-adherent method exhibited the lowest potency for proliferation and differentiation. The differentially expressed factors between mBM-MSCs were primarily those involved in immune responses. The highly expressed secreted factors included cytokines/members of the chemokine family, growth factors, and protein binding/proteinase activity. These findings provide a fundamental reference for development of MSC isolation methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714364PMC
http://dx.doi.org/10.1002/2211-5463.13493DOI Listing

Publication Analysis

Top Keywords

mouse bone
8
bone marrow
8
marrow mesenchymal
8
mesenchymal stem
8
stem cells
8
three easy-to-perform
8
isolated mbm-mscs
8
mbm-mscs three
8
methods bone
8
bone marrow-adherent
8

Similar Publications

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

Piezo1 Enhances Macrophage Phagocytosis and Pyrin Activation to Ameliorate Fungal Keratitis.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: Fungal keratitis (FK) remains a treatment challenge, necessitating new therapeutic targets. Piezo1, a mechanosensitive ion channel, regulates calcium signaling and immune cell function. This study investigates its role in macrophage-mediated antifungal responses in FK.

View Article and Find Full Text PDF

Spinal astrocyte-derived interleukin-17A promotes pain hypersensitivity in bone cancer mice.

Acta Pharm Sin B

December 2024

Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.

Spinal microglia and astrocytes are both involved in neuropathic and inflammatory pain, which may display sexual dimorphism. Here, we demonstrate that the sustained activation of spinal astrocytes and astrocyte-derived interleukin (IL)-17A promotes the progression of mouse bone cancer pain without sex differences. Chemogenetic or pharmacological inhibition of spinal astrocytes effectively ameliorates bone cancer-induced pain-like behaviors.

View Article and Find Full Text PDF

Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease which afflicts about nearly 1% of global population. RA results in synovitis and cartilage/bone damage, even disability which aggravates the health burden. Many drugs are used to relieve RA, such as glucocorticoids (GCs), non-steroidal anti-inflammatory drugs (NSAIDs), and disease-modifying anti-rheumatic drugs (DMARDs) in the clinical treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!