Background: Lack of knowledge around underlying mechanisms of gliomas mandates intense research efforts to improve the disease outcomes. Identification of high-grade gliomas pathogenesis which is known for poor prognosis and low survival is of particular importance. Distinguishing the differentially expressed genes is one of the core approaches to clarify the causative factors.

Methods: Microarray datasets of the treatment-naïve gliomas were provided from the Gene Expression Omnibus considering the similar platform and batch effect removal. Interacting recovery of the top differentially expressed genes was performed on the STRING and Cytoscape platforms. Kaplan-Meier analysis was piloted using RNA sequencing data and the survival rate of glioma patients was checked considering selected genes. To validate the bioinformatics results, the gene expression was elucidated by real-time RT-qPCR in a series of low and high-grade fresh tumor samples.

Results: We identified 323 up-regulated and 253 down-regulated genes. The top 20 network analysis indicated that PTX3, TIMP1, CHI3L1, LTF and IGFBP3 comprise a crucial role in gliomas progression. The survival was inversely linked to the levels of all selected genes. Further analysis of RNA sequencing data indicated a significant increase in all five genes in high-grade tumors. Among them, PTX3, TIMP1 and LTF did not show any change in low-grade versus controls. Real-time RT-qPCR confirmed the in-silico results and revealed significantly higher expression of selected genes in high-grade samples compared to low-grade.

Conclusions: Our results highlighted the role of PTX3 and TIMP1 which were previously considered in glioma tumorigenesis as well as LTF as a new potential biomarker.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508723PMC
http://dx.doi.org/10.1186/s13000-022-01253-0DOI Listing

Publication Analysis

Top Keywords

genes high-grade
12
selected genes
12
ptx3 timp1
12
genes
8
high-grade gliomas
8
differentially expressed
8
expressed genes
8
gene expression
8
rna sequencing
8
sequencing data
8

Similar Publications

Background/objectives: All 11 metallothionein protein-coding genes are located on human chromosome 16q13. It is unique among human genetics to have an entire pathway's genes clustered in a short chromosomal region. Since solid tumors, particularly high-grade serous ovarian cancer (HGSC), exhibit high rates of monoallelic aneuploidy, this region is commonly lost.

View Article and Find Full Text PDF

The tumor suppressor gene SMARCA4, a critical component of the SWI/SNF chromatin remodeling complex, is frequently inactivated in various cancers, including clear cell renal cell carcinoma (ccRCC). Despite its significance, the role of SMARCA4 in ccRCC development and its potential therapeutic vulnerabilities have not been fully explored. Our research found that SMARCA4 deficiency was associated with poor prognosis and was observed in a subset of high-grade ccRCCs.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) have revolutionized treatment for several tumor indications without demonstrated benefit for ovarian cancer patients. To improve the therapeutic ratio of ICIs in ovarian cancer patients, several different clinical trials are testing combinations with poly (ADP-ribose) polymerase (PARP) inhibitors. Comparing the immunomodulatory effects of clinically advanced PARP inhibitors may help to identify the best partner to combine with ICIs.

View Article and Find Full Text PDF

Mature aggressive B-cell lymphomas, such as Burkitt lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL), show variations in microRNA (miRNA) expression. The entity of High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) shares several biological features with both BL and DLBCL but data on its miRNA expression profile are yet scarce. Hence, this study aims to analyze the potential differences in miRNA expression of HGBCL-11q compared to BL and DLBCL.

View Article and Find Full Text PDF

Background And Objective: Bladder cancer (BC) represents a significant health care challenge and is frequently detected during evaluations for haematuria in emergency departments (EDs). Our aim was to evaluate the clinical performance and economic implications of the Xpert BC Detection (BCD) test for patients presenting to the ED with haematuria to address the pressing need for more efficient and accurate diagnostic tools in this setting.

Methods: We conducted a prospective single-centre observational study in the ED of a tertiary university hospital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!