Background: Healthcare workers (HCWs), such as doctors, nurses, and support staffs involved in direct or indirect patient care, are at increased risk of influenza virus infections due to occupational exposures. Vaccination is the most effective way to prevent influenza. Despite the World Health Organization (WHO) recommendations, Bangladesh lacks a seasonal influenza vaccination policy for HCWs, and thus vaccination rates remain low. The current project aims to investigate the effect of interventions on influenza vaccine awareness and availability of vaccine supply, explore HCWs' knowledge and perceptions about influenza vaccination, understand the barriers and motivators for influenza vaccine uptake, and understand policymakers' views on the practicality of influenza vaccination among HCWs.
Method: We will conduct the study at four tertiary care teaching hospitals in Bangladesh, using a cluster randomized controlled trial approach, with the hospital as the unit of randomization and intervention. The study population will include all types of HCWs.The four different types of intervention will be randomly allocated and implemented in four study hospitals separately. The four interventions will be: i) ensuring the availability of influenza vaccine supply; ii) developing influenza vaccine awareness; iii) both ensuring influenza vaccine supply and developing influenza vaccine awareness and iv) control arm with no intervention. Both quantitative and qualitative approaches will be applied to assess the intervention effect. We will estimate the Difference in Differences (DID) with 95% CI of the proportion of vaccine uptake between each intervention and control (non-intervention) arm, adjusting for the clustering effect. The qualitative data will be summarised using a framework matrix method.
Discussion: The results of this study will inform the development and implementation of a context-specific strategy to enhance influenza vaccination rates among Bangladeshi HCWs.
Trial Registration: Clinicaltrials.gov NCT05521763. Version 2.0 was registered in September 2022, and the first participant enrolled in March 2022. Retrospectively registered.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509585 | PMC |
http://dx.doi.org/10.1186/s12889-022-14182-w | DOI Listing |
Front Immunol
January 2025
Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain.
Introduction: Despite the efficacy and safety of SARS-CoV-2 vaccines, inflammatory and/or thrombotic episodes have been reported. Since the impact of COVID-19 vaccines on the endothelium remains uncertain, our objective was to assess endothelial activation status before and 90 days after the third dose of the BNT162b2 mRNA COVID-19 vaccine.
Methods: A prospective longitudinal study was conducted at University General Hospital of Albacete, involving 38 healthy health-care workers.
Front Immunol
January 2025
College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
Introduction: Animal influenza viruses pose a danger to the general public. Eurasian avian-like H1N1 (EA H1N1) viruses have recently infected humans in several different countries and are often found in pigs in China, indicating that they have the potential to cause a pandemic. Therefore, there is an urgent need to develop a potent vaccine against EA H1N1.
View Article and Find Full Text PDFJ Immunol Methods
January 2025
Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia.
Background: Rapid vaccine platforms development is crucial for responding to epidemics and pandemics of emerging infectious diseases, such as Ebola. This study explores the potential of peptide vaccines that self-organize into amyloid-like fibrils, aiming to enhance immunogenicity while considering safety and cross-reactivity.
Methods: We synthesized two peptides, G33 and G31, corresponding to a segment of the Ebola virus GP2 protein, with G33 known to form amyloid-like fibrils.
Lancet Microbe
January 2025
Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital-University Medical Center Utrecht, Utrecht, Netherlands. Electronic address:
Background: Live attenuated influenza vaccines (LAIVs) alter nasopharyngeal microbiota in adults. It is poorly understood why LAIV immunogenicity varies across populations, but it could be linked to the microbiome. We aimed to investigate the interactions between intranasal immunisation with LAIV and nasopharyngeal microbiota composition in children from The Gambia.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Department of Infectious Disease, Imperial College London, London, UK.
The COVID-19 pandemic highlighted the need for rapidly deployable, flexible vaccine platforms; particularly RNA which is now being explored for several other pathogens. DNA vaccines have potential advantages over RNA, including cost of manufacture, ease of storage and potentially lower reactogenicity. However, they have historically underperformed in large animals and human trials due to low immunogenicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!