The neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), and red cell distribution width (RDW) are emerging biomarkers to predict outcomes in general ward patients. However, their role in the prognostication of critically ill patients with pneumonia is unclear. A total of 216 adult patients were enrolled over 2 years. They were classified into viral and bacterial pneumonia groups, as represented by influenza A virus and Streptococcus pneumoniae, respectively. Demographics, outcomes, and laboratory parameters were analysed. The prognostic power of blood parameters was determined by the respective area under the receiver operating characteristic curve (AUROC). Performance was compared using the APACHE IV score. Discriminant ability in differentiating viral and bacterial aetiologies was examined. Viral and bacterial pneumonia were identified in 111 and 105 patients, respectively. In predicting hospital mortality, the APACHE IV score was the best prognostic score compared with all blood parameters studied (AUC 0.769, 95% CI 0.705-0.833). In classification tree analysis, the most significant predictor of hospital mortality was the APACHE IV score (adjusted P = 0.000, χ = 35.591). Mechanical ventilation was associated with higher hospital mortality in patients with low APACHE IV scores ≤ 70 (adjusted P = 0.014, χ = 5.999). In patients with high APACHE IV scores > 90, age > 78 (adjusted P = 0.007, χ = 11.221) and thrombocytopaenia (platelet count ≤ 128, adjusted P = 0.004, χ = 12.316) were predictive of higher hospital mortality. The APACHE IV score is superior to all blood parameters studied in predicting hospital mortality. The single inflammatory marker with comparable prognostic performance to the APACHE IV score is platelet count at 48 h. However, there is no ideal biomarker for differentiating between viral and bacterial pneumonia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509334 | PMC |
http://dx.doi.org/10.1038/s41598-022-20385-3 | DOI Listing |
Trends Microbiol
January 2025
Climate Change Cluster (C3), University of Technology Sydney, Sydney, New South Wales 2007, Australia; UAR 3278 CRIOBE, PSL Université Paris: EPHE-UPVD-CNRS, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France. Electronic address:
Inter-microbial interactions fundamentally govern ocean ecology and biogeochemistry. Recently, Henshaw and colleagues revealed that important inter-bacterial associations in the ocean can be shaped by viral infections, whereby infected cyanobacteria release specific chemicals that attract heterotrophic bacteria, uncovering a new tripartite microbial interaction that influences carbon transfer in the surface ocean.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Rheumatism and Immunity, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
Patients receiving kidney transplant experience immunosuppression, which increases the risk of bacterial, viral, fungal, and parasitic infections. Q fever is a potentially fatal infectious disease that affects immunocompromised renal transplant recipients and has implications in terms of severe consequences for the donor's kidney. A patient with acute Q fever infection following kidney transplantation was admitted to the Tsinghua Changgung Hospital in Beijing, China, in March 2021.
View Article and Find Full Text PDFViruses
January 2025
Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA.
Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!