Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption.

Nat Commun

The MOE Key Laboratory of Cell Proliferation and Differentiation, Genome Editing Research Center, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.

Published: September 2022

Because of their small size, the recently developed CRISPR-Cas12f nucleases can be effectively packaged into adeno-associated viruses for gene therapy. However, a systematic evaluation of the editing outcomes of CRISPR-Cas12f is lacking. In this study, we apply a high-throughput sequencing method to comprehensively assess the editing efficiency, specificity, and safety of four Cas12f proteins in parallel with that of Cas9 and two Cas12a proteins at multiple genomic sites. Cas12f nucleases achieve robust cleavage at most of the tested sites and mainly produce deletional fragments. In contrast, Cas9 and Cas12a show relatively higher editing efficiency at the vast majority of the tested sites. However, the off-target hotspots identified in the Cas9- and Cas12a-edited cells are negligibly detected in the Cas12f-edited cells. Moreover, compared to Cas9 and Cas12a nucleases, Cas12f nucleases reduce the levels of chromosomal translocations, large deletions, and integrated vectors by 2- to 3-fold. Therefore, our findings confirm the editing capacity of Cas12f and reveal the ability of this nuclease family to preserve genome integrity during genome editing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9509373PMC
http://dx.doi.org/10.1038/s41467-022-33346-1DOI Listing

Publication Analysis

Top Keywords

cas9 cas12a
12
crispr-cas12f nucleases
8
editing efficiency
8
cas12f nucleases
8
tested sites
8
nucleases
5
editing
5
comprehensive assessment
4
assessment miniature
4
miniature crispr-cas12f
4

Similar Publications

Dual-nuclease single-cell lineage tracing by Cas9 and Cas12a.

Cell Rep

December 2024

Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China. Electronic address:

Single-cell lineage tracing based on CRISPR-Cas9 gene editing enables the simultaneous linkage of cell states and lineage history at a high resolution. Despite its immense potential in resolving the cell fate determination and genealogy within an organism, existing implementations of this technology suffer from limitations in recording capabilities and considerable barcode dropout. Here, we introduce DuTracer, a versatile tool that utilizes two orthogonal gene editing systems to record cell lineage history at single-cell resolution in an inducible manner.

View Article and Find Full Text PDF

RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ∼20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety.

View Article and Find Full Text PDF

CRISPR-Cas system, a natural acquired immune system in prokaryotes that defends against exogenous DNA invasion because of its simple structure and easy operation, has been widely used in many research fields such as synthetic biology, crop genetics and breeding, precision medicine, and so on. The miniature CRISPR-Cas12 system has been an emerging genome editing tool in recent years. Compared to the commonly used CRISPR-Cas9 and CRISPR-Cas12a, the miniature CRISPR-Cas12 system has unique advantages, such as rich PAM sites, higher specificity, smaller volume, and cytotoxicity.

View Article and Find Full Text PDF

DNA target binding-induced pre-crRNA processing in type II and V CRISPR-Cas systems.

Nucleic Acids Res

December 2024

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, No. 4221, Xiang'an South Road, Xiamen 361102, China.

Article Synopsis
  • Precursor CRISPR RNA (pre-crRNA) processing involves the removal of segments from both repeat and spacer sequences, which is essential for maturation of crRNA.
  • The study reveals that specific type II and V Cas proteins, like Cas12a and Cas9, can cleave pre-crRNA spacers when bound to DNA targets, showcasing different activation mechanisms.
  • The researchers also developed a straightforward, highly sensitive, and specific one-step DNA detection method utilizing the newly discovered cleavage activity of pre-crRNA spacers.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!