Cytochrome P450s () display significant inter-individual variation in expression, much of which remains unexplained by known single-nucleotide polymorphisms (SNPs). Testis-specific Y-encoded-like proteins (s) are transcriptional regulators for several drug-metabolizing including However, transcription factors (TFs) that might influence expression through an effect on expression are unknown. Therefore, we studied regulators of expression in hepatic cell lines and their possible SNP-dependent variation. Specifically, we identified candidate TFs that might influence expression using the ENCODE ChIPseq database. Subsequently, the expression of as well as that of selected CYP targets for regulation were assayed in hepatic cell lines before and after knockdown of TFs that might influence expression through TSPYL-dependent mechanisms. Those results were confirmed by studies of TF binding to gene promoter regions. In hepatic cell lines, knockdown of the REST and ZBTB7A TFs resulted in decreased and expression and increased expression, changes reversed by overexpression. Potential binding sites for and on the promoters of and were confirmed by chromatin immunoprecipitation. Finally, common SNP variants in upstream binding sites on the promoters were identified and luciferase reporter constructs confirmed SNP-dependent modulation of gene transcription. In summary, we identified REST and ZBTB7A as regulators of the expression of TSPYL genes which themselves can contribute to regulation of expression and-potentially-of drug metabolism. SNP-dependent modulation of TSPYL transcription may contribute to individual variation in both expression and-downstream-drug response phenotypes. SIGNIFICANCE STATEMENT: Testis-specific Y-encoded-like proteins (s) are transcriptional regulators of cytochrome P450 () gene expression. Here, we report that variation in expression as a result of the effects of genetically regulated TSPYL transcription factors is an additional factor that could result in downstream variation in expression and potentially, as a result, variation in drug biotransformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9832376 | PMC |
http://dx.doi.org/10.1124/dmd.122.000945 | DOI Listing |
Sci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFNat Commun
December 2024
Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
Short tandem repeats (STRs) have emerged as important and hypermutable sites where genetic variation correlates with gene expression in plant and animal systems. Recently, it has been shown that a broad range of transcription factors (TFs) are affected by STRs near or in the DNA target binding site. Despite this, the distribution of STR motif repetitiveness in eukaryote genomes is still largely unknown.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.
Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.
View Article and Find Full Text PDFOral Dis
December 2024
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Background: To meet their high energy needs, tumor cells undergo aberrant metabolic reprogramming. A tumor cell may expertly modify its metabolic pathways and the differential expression of the genes for metabolic enzymes. The physiological requirements of the host tissue and the tumor cell of origin mostly dictate metabolic adaptation.
View Article and Find Full Text PDFPharm Dev Technol
December 2024
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!