Layered double hydroxides are considered promising electrode materials for the preparation of high-energy-density supercapacitors owing to their suitable microstructure and significant electrochemical properties. In this study, honeycomb-like NiMn-layered double-hydroxide (NiMn-LDH) nanosheet arrays with numerous electron/ion channels, a large number of active sites, considerable redox reversibility, and significant electrical conductivity were synthesized by combining Co(OH)CO nanoneedle arrays with NiMn-LDH nanosheet arrays and Ag nanoparticles on a carbon cloth (CC) substrate through a hydrothermal strategy (CC@CoCH/NM-LDH-Ag). The fabricated CC@CoCH/NM-LDH-Ag binder-free electrode exhibited a high specific capacitance of 10,976 mF cm (3092F/g, 1391.4C g) at 2 mA cm (1 A/g), and a high capacitance retention of 93.2 % after 10,000 cycles at a current density of 20 mA cm. In addition, a solid-state asymmetric supercapacitor (ASC) device assembled using CC@CoCH/NM-LDH-Ag as the cathode possessed an ultrahigh energy density of 68.85 Wh kg at a power density of 722.6 W kg, and two fabricated ASC units in series were able to power a multifunctional display for more than 30 min. Therefore, this study provides a new approach for the design and synthesis of high-performance flexible electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.08.175 | DOI Listing |
Molecules
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China.
Water electrolysis is a promising path to the industrialization development of hydrogen energy. The exploitation of high-efficiency and inexpensive catalysts become important to the mass use of water decomposition. Ni-based nanomaterials have exhibited great potential for the catalysis of water splitting, which have attracted the attention of researchers around the world.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, China.
Electrochemical nitrite (NO) is a promising technology for NO removal and a sustainable method for generating valuable ammonia (NH), but this process is intricate and generates other byproducts. In this work, we propose a facile and low-cost method for the preparation of a CuMoO nanosheet array, which can serve as an efficient electrocatalyst for the reduction of NO to NH. The morphology of CuMoO can be adjusted by controlling the synthesis conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China.
Rational regulation of active hydrogen (*H) behavior is crucial for advancing electrocatalytic nitrate reduction reaction (NORR) to ammonia (NH), yet in-depth understanding of the *H generation, transfer, and utilization remains ambiguous, and explorations for *H dynamic optimization are urgently needed. Herein we engineer a NiN nanosheet array intimately decorated with Cu nanoclusters (NF/NiN-Cu) for remarkably boosted NORR. From comprehensive experimental and theoretical investigations, the NiN moieties favors water dissociation to generate *H, and then *H can rapidly transfer to the Cu via unique reverse hydrogen spillover mediating interfacial Ni-N-Cu bridge bond, thus increasing *H coverage on the Cu site for subsequent deoxygenation/hydrogenation.
View Article and Find Full Text PDFMolecules
December 2024
School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China.
Nickel disulfide (NiS) nanoparticles are encapsulated within nitrogen and sulfur co-doped carbon nanosheets, which are grown onto carbon nanofibers to form an array structure (NiS/C@CNF), resulting in a self-supporting film. This encapsulated structure not only prevents the agglomeration of NiS nanoparticles, but also memorably buffers its volume changes during charge/discharge cycles, thereby maintaining structural integrity. The nitrogen and sulfur co-doping enhances electronic conductivity and facilitates the faster ion transport of the carbon backbone, improving the low conductivity of the NiS/C@CNF anodes.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
In this research, a novel detection method employing rare-earth upconversion nanoparticle (UCNP) as the core, coated with MnO nanosheets is designed, which formed a color and fluorescence dual-responsive UCNP composite material, MnO-modified NaYF:Yb,Tm@NaYF. By enabling both colorimetric and fluorescence methods simultaneously, this composite material allows for the detection of glucose concentration under different conditions, while exhibiting strong resistance to environmental interference, chemical stability, and accuracy. To further enhance the sensitivity of the detection method, a photonic crystals (PCs)-PDMS array where polymethyl methacrylate PCs are deposited onto a substrate composed of PDMS-glass slice with hydrophobic surfaces is developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!