Heteroatom doping was recently regarded as an effective method to tune the band gap and improve the separation and transfer of photogenerated electron-hole pairs in semiconductor photocatalysts. Herein, a novel S,F-codoped BiWO (S,F-BiWO) with suitable oxygen vacancies was synthesized via the hydrothermal-calcination and post-sulfurization, for efficient Cr(VI) reduction and methyl orange (MO) degradation under visible light. The amount of surface oxygen vacancies could be controlled by adjusting the S/F ratio during the doping process, which modulated the band structure and photogenerated charge behavior of BiWO. The optimal SF-BiWO exhibited an excellent photooxidation-reduction performance, which Cr(VI) reduction and MO degradation efficiencies were 1.6 and 2.6 times than those of the pristine BiWO without oxygen vacancy under visible-light, respectively. The enhanced photooxidation-reduction performance was because the right amount of oxygen vacancies could effectively narrow the bandgap and improve the separation efficiency of electron-hole pairs. Thus, this work offered a mild and simply approach for preparing heteroatom doped BiWO and a potential to be extended to the synthesis of other doped materials for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.09.031 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Fudan University, 2005 Huhu Rd, Shanghai, CHINA.
All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.
View Article and Find Full Text PDFNat Commun
January 2025
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China.
Active and stable electrocatalysts are essential for hydrogen production from alkaline water electrolysis. However, precisely controlling the interaction between electrocatalysts and reaction intermediates (HO*, H*, and *OH) remains challenging. Here, we demonstrate an yttrium-doped NiMo-MoO heterogenous electrocatalyst that efficiently promotes water dissociation and accelerates the intermediate adsorption/desorption dynamics in alkaline electrolytes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, Environmental Science and Engineering, CHINA.
Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China.
The aqueous iron ion batteries (AIIBs) are an attractive option for large-scale energy storage applications. However, the inadequate plating and stripping of Fe ions underscore the need to explore more suitable cathode materials. Herein, we optimize the structure of tunnel-like VO nanosheets by introducing Mn ion intercalation as a cathode material to enhance their performance in AIIBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!