Dynamic gelatin-based hydrogels promote the proliferation and self-renewal of embryonic stem cells in long-term 3D culture.

Biomaterials

School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China. Electronic address:

Published: October 2022

Long-term maintenance of embryonic stem cells (ESCs) in the undifferentiated state is still challenging. Compared with traditional 2D culture methods, 3D culture in biomaterials such as hydrogels is expected to better support the long-term self-renewal of ESCs by emulating the biophysical and biochemical properties of the extracellular matrix (ECM). Although prior studies showed that soft and degradable hydrogels favor the 3D growth of ESCs, few studies have examined the impact of the structural dynamics of the hydrogel matrix on ESC behaviors. Herein, we report a gelatin-based structurally dynamic hydrogel (GelCD hydrogel) that emulates the intrinsic structural dynamics of the ECM. Compared with covalently crosslinked gelatin hydrogels (GelMA hydrogels) with similar stiffness and biodegradability, GelCD hydrogels significantly promote the clonal expansion and viability of encapsulated mouse ESCs (mESCs) independent of MMP-mediated hydrogel degradation. Furthermore, GelCD hydrogels better maintain the pluripotency of encapsulated mESCs than do traditional 2D culture methods that use MEF feeder cells or medium supplementation with GSK3β and MEK 1/2 inhibitors (2i). When cultured in GelCD hydrogels for an extended period (over 2 months) with cell passaging every 7 days, mESCs preserve their normal morphology and maintain their pluripotency and full differentiation capability. Our findings highlight the critical role of the structural dynamics of the hydrogel matrix in accommodating the volume expansion that occurs during clonal ESC growth, and we believe that our dynamic hydrogels represent a valuable tool to support the long-term 3D culture of ESCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121802DOI Listing

Publication Analysis

Top Keywords

structural dynamics
12
gelcd hydrogels
12
hydrogels
9
hydrogels promote
8
embryonic stem
8
stem cells
8
long-term culture
8
traditional culture
8
culture methods
8
support long-term
8

Similar Publications

Mechanism exploration of intestinal mucus penetration of nano-se: Regulated by polysaccharides with different functional groups and molecular weights.

J Control Release

January 2025

State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.

Selenium deficiency associated with a high risk of many diseases remains a global challenge. Owing to the narrow margin between "nutrition-toxicity" doses of selenium, it is imperative to achieve accurate selenium supplement. Nano‑selenium (SeNPs) is a novel form of selenium supplement with low toxicity, but it could be trapped and removed by intestinal mucus, thus limiting its oral delivery.

View Article and Find Full Text PDF

Mg-dependent mechanism of environmental versatility in a multidrug efflux pump.

Structure

January 2025

Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. Electronic address:

Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are major drivers of multidrug resistance among gram-negative bacteria. Cations, such as Mg, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg and pH in modulating the structural dynamics of the periplasmic adapter protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug pump from Escherichia coli.

View Article and Find Full Text PDF

Synergistic effects of clays and cyanobacteria on the accumulation dynamics of soil organic carbon in artificial biocrusts.

J Environ Manage

January 2025

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China. Electronic address:

Biocrusts are the primary organic carbon reservoirs in desert areas, in which inorganic clays potentially playing significant roles; however, the specific details of these roles remain largely unclear. In this study, typical 1:1 type (kaolin) and 2:1 type (montmorillonite, MMT) clay minerals were added to artificial biocrusts to investigate their effect on the acquisition performance of soil organic carbon (SOC). After 84 days of cultivation, the enhancement effects of kaolin and MMT were significant, resulting in SOC increments that were 5.

View Article and Find Full Text PDF

The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.

View Article and Find Full Text PDF

A review on evolution, structural characteristics, interactions, and regulation of the membrane transport protein: The family of Rab proteins.

Int J Biol Macromol

January 2025

Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas Campus, New Delhi 110016, India; Department of Bio-Science and Technology, MM Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133203, India. Electronic address:

Rab proteins are a key family of small GTPases that play crucial roles in vesicular trafficking, membrane dynamics, and maintaining cellular homeostasis. Studying this family of proteins is interesting as having many structural isoforms with variable evolutionary trends and wide distribution in cells. The proteins are renowned for their unique structural characteristics, which support their functional adaptability and specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!