A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Permeation of albumin through the skin depending on its concentration and the substrate used in simulated conditions in vivo. | LitMetric

Permeation of albumin through the skin depending on its concentration and the substrate used in simulated conditions in vivo.

Biomed Pharmacother

Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland.

Published: November 2022

Objective: Many drugs applied to the skin with a systemic effect do not have a therapeutic effect, due to the barrier posed by the complex structure of the skin. To counteract this, absorption promoters are often added to the drug formulation. The use of albumin as an effective drug carrier is increasingly being addressed. Albumin, a natural, non-toxic polymer, can target drugs to specific cells and extend their biological half-life. This study was designed to trace the permeation of albumin after topical administration to the skin as a potential carrier of therapeutic substances.

Materials And Methods: Four dermal formulations based on different polymers were prepared: methyl cellulose, sodium alginate, hypromellose and chitosan with methyl cellulose, obtaining final concentrations of albumin of 2%, 1.5% and 1%. The permeation of albumin through the skin was examined under simulated in vivo conditions.

Results: Most albumin permeated from the methylcellulose-based hydrogel. Depending on the concentration of albumin, permeation profiles were plotted and permeation rate constant and AUC were calculated.

Conclusion: Methylcellulose was the optimal polymer for albumin release, whereas hypromellose was the least favorable. The concentration of albumin influences the amount and rate of permeation of this protein. The optimal concentration was 10 mg/g, from which the most albumin penetrated and the fastest. Human skin appeared to be more permeable to albumin than pig skin. However, the similar permeation profile through both membranes successfully allows the use of pig skin to track and evaluate the permeation of therapeutic substances with systemic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.113722DOI Listing

Publication Analysis

Top Keywords

permeation albumin
12
albumin
11
permeation
8
skin
8
albumin skin
8
depending concentration
8
methyl cellulose
8
concentration albumin
8
pig skin
8
skin depending
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!