Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells. Here we review surgical, chemical, and inflammatory injury models and evidence that immune responses promote or deter chemosensory cell regeneration. Macrophage and neutrophil responses to chemosensory receptor injury have been the most widely studied without consensus on their net effects on regeneration. We discuss possible technical and biological reasons for the discrepancy, such as the difference between peripheral and central structures, and suggest directions for progress in understanding immune regulation of chemosensory regeneration. Our mechanistic understanding of immune-chemosensory cell interactions must be expanded before therapies can be developed for recovering the sensation of taste and smell after head injury from traumatic nerve damage and infection. Chemosensory loss leads to decreased quality of life, depression, nutritional challenges, and exposure to environmental dangers highlighting the need for further studies in this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508897 | PMC |
http://dx.doi.org/10.1093/chemse/bjac024 | DOI Listing |
Seizure
January 2025
Neurology department, Royal Brisbane and Women's Hospital, Brisbane, Australia.
Objectives: There have been conflicting reports about the frequency of neural autoantibodies in epilepsy cohorts, which is confounded by the lack of clear distinction of epilepsy from acute symptomatic seizures due to encephalitis. The aim of this study was to determine the frequency of neural autoantibodies in a well characterised population of refractory focal epilepsy of known and unknown cause.
Methods: Cases were recruited from epilepsy outpatient clinics at the Princess Alexandra, Mater, Royal Brisbane and Women's and Cairns Base Hospitals from 2021 - 2023.
ACS Nano
January 2025
Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China.
Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.
View Article and Find Full Text PDFMol Pharm
January 2025
Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China.
At the end of 2019, SARS-CoV-2 emerged and rapidly spread, having a profound negative impact on human health and socioeconomic conditions. In response to this unprecedented global health crisis, significant advancements were made in the mRNA vaccine technology. In this study, we have compared the difference between two SARS-CoV-2 receptor-binding domain (RBD) mRNA-Lipid nanoparticle (LNP) vaccines prepared from two different ionizable cationic lipids: ALC-0315 and MC3.
View Article and Find Full Text PDFSci Adv
January 2025
MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK.
Induction of senescence by chemotherapeutic agents arrests cancer cells and activates immune surveillance responses to contribute to therapy outcomes. In this investigation, we searched for ways to enhance the NK-mediated elimination of senescent cells. We used a staggered screen approach, first identifying siRNAs potentiating the secretion of immunomodulatory cytokines to later test for their ability to enhance NK-mediated killing of senescent cells.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
The transmission bottleneck, defined as the number of viruses shed from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission bottleneck remains poorly characterized. We adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes, infected donor hamsters with this pool, and exposed contact hamsters to paired infected donors, varying the duration and route of exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!