Manufacturing of Peptide Microarrays Based on Catalyst-Free Click Chemistry.

Methods Mol Biol

School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland, Sion, Switzerland.

Published: September 2022

Immobilization of peptides to a solid surface is frequently an important first step before they can be probed with a variety of biological samples in a heterogeneous assay format for research and clinical diagnostic purposes. Peptides can be derivatized in many ways to subsequently covalently attach them to an activated solid surface such as, for instance, epoxy-functionalized glass slides. Here, we describe a clean, efficient, and reproducible fabrication process based on catalyst-free click chemistry compatible with the construction of low- to high-density peptide microarrays.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2732-7_4DOI Listing

Publication Analysis

Top Keywords

peptide microarrays
8
based catalyst-free
8
catalyst-free click
8
click chemistry
8
solid surface
8
manufacturing peptide
4
microarrays based
4
chemistry immobilization
4
immobilization peptides
4
peptides solid
4

Similar Publications

Bacterial proteome microarray technology in biomedical research.

Trends Biotechnol

January 2025

Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

PCM Consulting, Pathways Connectivity Maps Inc., Mountain View, CA, USA.

Background: High-throughput assays have attracted significant attention in Alzheimer's Disease (AD) research, especially for enabling rapid diagnostics screening for factors at the molecular level contributing to the disease recurrence. With advances in laboratory automation, there is a growing need for quality pre-clinical data. Assays such as Microarrays, Proteomics, or AI are all dependent on high-quality input data that serve as a starting point.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Centre for Studies on Prevention of Alzheimer's disease (StoP-AD Centre), Douglas Mental Health Institute, Montreal, QC, Canada.

Background: Clusterin is a major cholesterol transporter in the central nervous system (CNS) and different SNPs in the CLU gene have been associated with Alzheimer's disease (AD) risk. The rs11136000_T variant in the CLU gene has been shown to decrease the risk of AD. In this work, we investigate the role of the CLU rs11136000_T protective variant and of the clusterin protein throughout different phases of the AD spectrum.

View Article and Find Full Text PDF

Background: Scavenger receptors (SR) are a group of receptors involved in the endocytosis of various ligands, such as modified LDL and soluble β-amyloid, which connects them to Alzheimer's disease (AD). SCARF2 (SREC-II) is part of the SR family, but unlike other scavenger receptors, internalizes a low amount of modified LDL. Its main function revolves around the binding of Aβ (Vo et al.

View Article and Find Full Text PDF

Proposal for a non-adhesive single-cell culture technology for primary hepatocytes.

Cytotechnology

February 2025

Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395 Japan.

Unlabelled: Primary hepatocytes (PHs) are indispensable for studying liver function, drug screening, and regenerative medicine. However, freshly isolated PHs only survive for a few hours in non-adherent suspension culture. This study proposes treatment with PEG-GRGDS, a polymer-peptide conjugate comprising polyethylene glycol (PEG) and the pentapeptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS), to sustain the viability of dispersed single PHs under non-adherent conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!