Autofluorescence rising from biological substrates under proper excitation light depends on the presence of specific endogenous fluorophores and can provide information on the morpho-functional properties in which they are strictly involved. Besides the numerous endogenous fluorophores involved in metabolic functions, fibrous proteins may act as direct, label-free biomarkers of the tissue structural organization. The optical properties of collagen, in particular, are currently applied as an alternative to established histochemical procedures to investigate the connective tissue as well as its changes in diseased conditions. This is particularly true in hepatology where the histochemical procedures to label the reticular structure are not routinely applied, as they are complex and time-consuming. The morphology of the liver reticular structure and its changes are up to now poorly considered despite the increasing awareness of the regulatory role played by the remodeling of the reticular structure in pathological conditions. In this context, the autofluorescence label-free imaging has proven to be a suitable approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2675-7_2 | DOI Listing |
J Virol
January 2025
Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.
View Article and Find Full Text PDFJ Craniofac Surg
December 2024
Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seodaemun-gu.
Introduction: Thread lifting procedures are becoming increasingly popular for facial rejuvenation. However, various complications can arise during these procedures, many of which are influenced by anatomic factors.
Methods: In this section, the authors explore the potential side effects associated with thread lifting and emphasize the anatomic structures that require careful attention.
Chem Asian J
January 2025
University of Kerala, Department of Chemistry, Kariavattom Campus, 695581, Thiruvananthapuram, INDIA.
Crystallinity, stability, and complexity are significant factors to consider in the design and development of covalent organic frameworks (COFs). Among various building blocks used, 1,3,5-triformylphloroglucinol (Tp) is notable for enhancing both crystallinity and structural stability in COFs. Tp facilitates the formation of β-ketoenamine-linked COFs through keto-enol tautomerism when reacted with aromatic amines.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China.
Two dimensional β-ketoamine covalent organic frameworks (2D TP-COFs) are one category of promising metal-free catalysts for photocatalytic overall water splitting (OWS) because of their unusual stability and versatile electronic/optical properties. However, none of the currently reported TP-COFs can accomplish the hydrogen evolution (HER) and oxygen evolution reactions (OER) simultaneously without adding any sacrificial agents and cocatalysts. To address this challenging issue, we rationally designed 23 2D TP-COFs by regulating the linkage groups and comprehensively evaluated their OWS activity by using the first-principles method.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow 121552, Russia.
Constructing artificial tertiary lymphoid structures (TLSs) opens new avenues for advancing cancer immunotherapy and personalized medicine by creating controllable immune niches. Mesenchymal stromal cells (MSCs) offer an ideal stromal source for such constructs, given their potent immunomodulatory abilities and accessibility. In this study, we explored the potential of adipose-derived MSCs to adopt TLS-supportive phenotypes and facilitate lymphocyte organization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!