Determination of Volatile Metabolites in Vinegar by Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS).

Methods Mol Biol

Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cádiz, Agrifood Campus of International Excellence (ceiA3), Puerto Real, Cádiz, Spain.

Published: September 2022

Solid-phase microextraction (SPME) is an easy, sensitive, and environmentally friendly technique that has been employed, coupled to gas chromatography or liquid chromatography, to determine a huge amount of analytes with different volatilities. The present work describes the procedure to follow in order to determine volatile compounds in vinegar by SPME-GC-MS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2699-3_2DOI Listing

Publication Analysis

Top Keywords

determination volatile
4
volatile metabolites
4
metabolites vinegar
4
vinegar solid-phase
4
solid-phase microextraction-gas
4
microextraction-gas chromatography-mass
4
chromatography-mass spectrometry
4
spectrometry spme-gc-ms
4
spme-gc-ms solid-phase
4
solid-phase microextraction
4

Similar Publications

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.

View Article and Find Full Text PDF

Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.

View Article and Find Full Text PDF

Exhaled Breath Analysis Using a Novel Electronic Nose for Different Respiratory Disease Entities.

Lung

January 2025

Department of Internal Medicine, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng District, Taipei City, 100225, Taiwan.

Purpose: Electronic noses (eNose) and gas chromatography mass spectrometry (GC-MS) are two important breath analysis approaches for differentiating between respiratory diseases. We evaluated the performance of a novel electronic nose for different respiratory diseases, and exhaled breath samples from patients were analyzed by GC-MS.

Materials And Methods: Patients with lung cancer, pneumonia, structural lung diseases, and healthy controls were recruited (May 2019-July 2022).

View Article and Find Full Text PDF

Emission rates for volatile organic compounds (VOCs) have been quantified from frying, spice and herb cooking, and cooking a chicken curry, using real-time selected-ion flow-tube mass spectrometry (SIFT-MS) for controlled, laboratory-based experiments in a semi-realistic kitchen. Emissions from 7 different cooking oils were investigated during the frying of wheat flatbread (puri). These emissions were dominated by ethanol, octane, nonane and a variety of aldehydes, including acetaldehyde, heptenal and hexanal, and the average concentration of acetaldehyde (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!