Bud dormancy is essential for perennial trees that survive the cold winters and to flower on time in the following spring. Histone modifications have been reported to be involved in the control of the dormancy cycle and DAM/SVPs are considered targets. However, how the histone modification marks are added to the specific gene loci during bud dormancy cycle is still unknown. Using yeast-two hybrid library screening and co-immunoprecipitation assays, we found that PpyABF3, a key protein regulating bud dormancy, recruits Complex of Proteins Associated with Set1-like complex via interacting with PpyWDR5a, which increases the H3K4me3 deposition at DAM4 locus. Chromatin immunoprecipitation-quantitative polymerase chain reaction showed that PpyGA2OX1 was downstream gene of PpyABF3 and it was also activated by H3K4me3 deposition. Silencing of GA2OX1 in pear calli and pear buds resulted in a similar phenotype with silencing of ABF3. Furthermore, overexpression of PpyWDR5a increased H3K4me3 levels at DAM4 and GA2OX1 loci and inhibited the growth of pear calli, whereas silencing of PpyWDR5a in pear buds resulted in a higher bud-break percentage. Our findings provide new insights into how H3K4me3 marks are added to dormancy-related genes in perennial woody plants and reveal a novel mechanism by which ABF3 integrates abscisic acid signaling and gibberellic acid catabolism during bud dormancy maintenance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.18508DOI Listing

Publication Analysis

Top Keywords

bud dormancy
20
dormancy maintenance
8
catabolism bud
8
dormancy cycle
8
h3k4me3 deposition
8
pear calli
8
pear buds
8
dormancy
6
bud
5
ppyabf3 recruits
4

Similar Publications

The essential role of the hickory StMADS11 subfamily in flower organogenesis and flowering time in Arabidopsis.

Plant Physiol Biochem

December 2024

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China. Electronic address:

The StMADS11 subfamily genes play a crucial role in regulating flowering time, flower development, and bud dormancy in plants. These genes exhibit functional differences between annual and perennial woody plants. In hickory (Carya cathayensis Sarg.

View Article and Find Full Text PDF

Bud dormancy is a vital physiological process in woody perennials, facilitating their adaptation to seasonal environmental changes. Satisfying genotype-specific chilling requirements (CR) and heat requirements (HR) through exposure to specific chilling and warm temperatures is essential for dormancy release and the subsequent resumption of growth. The genetic mechanisms regulating bud dormancy traits in Prunus mume remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Modern horticulture benefits from diverse flower characteristics like colors, types, bloom periods, and fragrances, enhancing their ornamental and economic value.
  • The review examines research on flower morphology, including differentiation and functional genes, as well as aspects of flower color, bloom timing, and fragrances.
  • It also addresses current challenges in this field and suggests future research directions to further improve these floral traits.
View Article and Find Full Text PDF

CsCBF1/CsZHD9-CsMADS27, a critical gene module controlling dormancy and bud break in tea plants.

Plant J

December 2024

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.

Tea plants are perennial evergreen woody crops that originated in low latitudes but have spread to high latitudes. Bud dormancy is an important adaptation mechanism to low temperatures, and its timing is economically significant for tea production. However, the core molecular networks regulating dormancy and bud break in tea plants remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Bud dormancy is crucial for flowering and fruit production, controlled by genetic and environmental factors, but specific mechanisms in temperate trees like Quercus suber are not well understood.
  • Research indicates that the genes CENTRORADIALIS-LIKE (CENL) and DORMANCY-ASSOCIATED PROTEIN 1 (QsDYL1) are involved in growth cessation and serve as markers for dormancy in Q. suber.
  • Analysis of gene expression and epigenetic changes during dormancy reveals that different chromatin modifiers influence the transition between dormancy and active bud formation, providing insights into how trees may adapt to climate change.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!