Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-022-01370-7 | DOI Listing |
Small Methods
January 2025
Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
With the proposal of the "carbon peak and carbon neutrality" goals, the utilization of renewable energy sources such as solar energy, wind energy, and tidal energy has garnered increasing attention. Consequently, the development of corresponding energy conversion technologies has become a focal point. In this context, the demand for electrochemical in situ characterization techniques in the field of energy conversion is gradually increasing.
View Article and Find Full Text PDFSci Data
January 2025
Institute of Developing Economy, Japan External Trade Organization, Chiba, 2618545, Japan.
Carbon emission research based on input-output tables (IOTs) has received attention, but data quality issues persist due to inconsistencies between the sectoral scopes of energy statistics and IOTs. Specifically, China's official energy data are reported at the industry level, whereas IOTs are organized by product sectors. Valid IOT-based environmental models require consistent transformation from industry-level to product-level emissions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
The increase of carbon dioxide (CO) concentration in the atmosphere is held responsible for global climate changes. To meet the objective of achieving carbon neutrality and keeping global warming in check, many cities, as hotspots of CO emissions, have been promoting the use of urban greenery, urban trees in particular, to mitigate carbon emissions from the built environment. However, there remain large uncertainty and divergence of the potential of urban trees for carbon mitigation, with the underlying mechanisms poorly understood.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China.
Bioenergy with carbon capture and storage (BECCS) is a key negative emission technology for climate mitigation. Some countries have made no commitment to carbon neutrality but are viewed as potential BECCS candidates (hereafter, non-CN countries). Here we analyze contributions of these countries to global climate mitigation with respect to BECCS using an Earth system model with explicit representations of bioenergy crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!